TOPOLOGICAL TRANSITIONS IN BERRYS PHASE INTERFERENCE EFFECTS

被引:66
作者
LYANDAGELLER, Y
机构
[1] A. F. Ioffe Physicotechnical Institute, 194 021, St. Petersburg
关键词
D O I
10.1103/PhysRevLett.71.657
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a topological transition which is an abrupt variation from pi to zero of Berry's phase, in the case when it is a phase difference of interfering waves. It manifests itself in a steplike current-magnetic field and current-gate voltage characteristics predicted for in-plane magnetoresistance of rings in noncentrosymmetric materials. Transition points occur at external magnetic fields equal to momentum-dependent effective magnetic fields for different tunneling channels of a quasi-one-dimensional ring. Similar effects due to the angular anisotropy of electron g factor are considered.
引用
收藏
页码:657 / 661
页数:5
相关论文
共 18 条
[1]   PHASE-CHANGE DURING A CYCLIC QUANTUM EVOLUTION [J].
AHARONOV, Y ;
ANANDAN, J .
PHYSICAL REVIEW LETTERS, 1987, 58 (16) :1593-1596
[2]  
[Anonymous], 1964, RELATIVISTIC QUANTUM
[3]  
[Anonymous], 1982, LANDOLTBORENSTEIN NU
[4]   SPIN-ORBIT BERRY PHASE IN CONDUCTING RINGS [J].
ARONOV, AG ;
LYANDAGELLER, YB .
PHYSICAL REVIEW LETTERS, 1993, 70 (03) :343-346
[5]  
Berry M. V., 1989, GEOMETRIC PHASES PHY
[7]   QUANTUM PHASE CORRECTIONS FROM ADIABATIC ITERATION [J].
BERRY, MV .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1987, 414 (1846) :31-46
[8]   QUANTUM OSCILLATIONS IN ONE-DIMENSIONAL NORMAL-METAL RINGS [J].
BUTTIKER, M ;
IMRY, Y ;
AZBEL, MY .
PHYSICAL REVIEW A, 1984, 30 (04) :1982-1989
[9]   EVIDENCE FOR SPIN SPLITTING IN INXGA1-XAS/IN0.52AL0.48AS HETEROSTRUCTURES AS B-]O [J].
DAS, B ;
MILLER, DC ;
DATTA, S ;
REIFENBERGER, R ;
HONG, WP ;
BHATTACHARYA, PK ;
SINGH, J ;
JAFFE, M .
PHYSICAL REVIEW B, 1989, 39 (02) :1411-1414
[10]   DETERMINATION OF ENERGY-SPECTRUM PARAMETERS FOR 2-DIMENSIONAL CARRIERS FROM THE QUANTUM OSCILLATION BEATING PATTERN [J].
DOROZHKIN, SI .
PHYSICAL REVIEW B, 1990, 41 (05) :3235-3237