DIRECT SYNTHESIS OF OPTIMUM DIFFERENCE PATTERNS FOR DISCRETE LINEAR ARRAYS USING ZOLOTAREV DISTRIBUTIONS

被引:26
作者
MCNAMARA, DA
机构
关键词
DISCRETE LINEAR ARRAYS; ZOLOTAREV DISTRIBUTIONS;
D O I
10.1049/ip-h-2.1993.0081
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A method is given for the exact synthesis of optimum difference patterns for linear antenna arrays. The technique uses Zolotarev polynomials and is analogous to the Dolph-Chebyshev synthesis of optimum sum patterns. It is shown how, given the number of array elements and the required sidelobe ratio, the array element excitations can be found. Complete computational details are given in an Appendix.
引用
收藏
页码:495 / 500
页数:6
相关论文
共 24 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]  
Bulirsch R., 1965, NUMER MATH, V7, P78, DOI [10.1007/BF01436529, DOI 10.1007/BF01397975]
[3]   ON COMPUTING ELLIPTIC INTEGRALS AND FUNCTIONS [J].
CARLSON, BC .
JOURNAL OF MATHEMATICS AND PHYSICS, 1965, 44 (01) :36-&
[4]   ELLIPTIC INTEGRALS OF 1ST KIND [J].
CARLSON, BC .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1977, 8 (02) :231-242
[5]  
Copson E.T, 1935, INTRO THEORY FUNCTIO
[6]   A CURRENT DISTRIBUTION FOR BROADSIDE ARRAYS WHICH OPTIMIZES THE RELATIONSHIP BETWEEN BEAM WIDTH AND SIDE-LOBE LEVEL [J].
DOLPH, CL .
PROCEEDINGS OF THE INSTITUTE OF RADIO ENGINEERS, 1946, 34 (06) :335-348
[7]  
Elliott RS., 2003, ANTENNA THEORY DESIG, P1
[8]  
Fox L, 1968, CHEBYSHEV POLYNOMIAL
[9]  
Gibbs W. J., 1958, CONFORMAL TRANSFORMA
[10]  
Gradshteyn IS, 1980, TABLES INTEGRALS SUM