OPTICAL MULTIEXCITONS - QUANTUM GAP SOLITONS IN NONLINEAR BRAGG REFLECTORS

被引:25
作者
CHENG, Z
KURIZKI, G
机构
[1] Department of Chemical Physics, Weizmann Institute of Science
关键词
D O I
10.1103/PhysRevLett.75.3430
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We find a Bethe-ansatz solution for pairwise interacting quanta within the effective-mass regime of band-gap propagation in nonlinear Bragg reflectors. Our theory predicts a new kind of collective excitation of the electromagnetic field dressed by such media, namely, optical multiexciton (OME) complexes (or condensates), which are quantum states associated with gap solitary waves. Their existence should be manifested by the discrete spectrum of band-gap transmission as a function of the transmitted photon number and by the multiexponential falloff of intensity-intensity correlations on a 0.1 mm scale. OMEs should have advantageous stability properties.
引用
收藏
页码:3430 / 3433
页数:4
相关论文
共 14 条
[1]   GAP SOLITONS AND THE NONLINEAR OPTICAL-RESPONSE OF SUPERLATTICES [J].
CHEN, W ;
MILLS, DL .
PHYSICAL REVIEW LETTERS, 1987, 58 (02) :160-163
[2]  
DESTERKE CM, 1994, PROG OPTICS, V33, P203
[3]   2-PHOTON BOUND-STATES - THE DIPHOTON BULLET IN DISPERSIVE SELF-FOCUSING MEDIA [J].
DEUTSCH, IH ;
CHIAO, RY ;
GARRISON, JC .
PHYSICAL REVIEW A, 1993, 47 (04) :3330-3336
[4]   QUANTUM SOLITONS IN OPTICAL FIBERS [J].
DRUMMOND, PD ;
SHELBY, RM ;
FRIBERG, SR ;
YAMAMOTO, Y .
NATURE, 1993, 365 (6444) :307-313
[5]   SOLITONS IN A PERIODIC STRUCTURE WITH KERR NONLINEARITY [J].
FENG, JH ;
KNEUBUHL, FK .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1993, 29 (02) :590-597
[6]  
HASEGAWA A, 1990, OPTICAL SOLITONS FIB
[7]   ELECTRON THEORY OF THE OPTICAL-PROPERTIES OF LASER-EXCITED SEMICONDUCTORS [J].
HAUG, H ;
SCHMITTRINK, S .
PROGRESS IN QUANTUM ELECTRONICS, 1984, 9 (01) :3-100
[8]   OPTICAL BISTABILITY IN SEMICONDUCTOR PERIODIC STRUCTURES [J].
HE, J ;
CADA, M .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1991, 27 (05) :1182-1188
[9]   QUANTUM-MECHANICAL STABILITY OF SOLITONS AND THE CORRESPONDENCE PRINCIPLE [J].
KARTNER, FX ;
HAUS, HA .
PHYSICAL REVIEW A, 1993, 48 (03) :2361-2369
[10]   QUANTUM-THEORY OF SOLITONS IN OPTICAL FIBERS .1. TIME-DEPENDENT HARTREE APPROXIMATION [J].
LAI, Y ;
HAUS, HA .
PHYSICAL REVIEW A, 1989, 40 (02) :844-853