ON THE ASYMPTOTIC SHAPE OF BLOW-UP

被引:32
作者
BRESSAN, A
机构
关键词
D O I
10.1512/iumj.1990.39.39045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For the semilinear parabolic equation u(t) = u(xx)+ e(u), we prove the existence of solutions which blow up in finite time and whose asymptotic shape near the blow up point approaches a nontrivial, nonsingular limit, in a suitable set of rescaled coordinates. Such asymptotic behavior is stable with respect to small perturbations of the initial conditions.
引用
收藏
页码:947 / 960
页数:14
相关论文
共 12 条
[1]  
BEBERNES A, 1987, INDIANA U J MATH, V36, P131
[2]  
Bebernes J., 1989, MATH PROBLEMS COMBUS, V83
[3]   A RESCALING ALGORITHM FOR THE NUMERICAL-CALCULATION OF BLOWING-UP SOLUTIONS [J].
BERGER, M ;
KOHN, RV .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (06) :841-863
[4]  
BRESSAN A, UNPUB SIAM J MATH AN
[5]  
CARR J, 1981, APPLIED MATH SCI, V35
[6]   ANALYSIS OF THE EARLY STAGE OF THERMAL RUNAWAY [J].
DOLD, JW .
QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 1985, 38 (AUG) :361-387
[7]   BLOW-UP OF POSITIVE SOLUTIONS OF SEMILINEAR HEAT-EQUATIONS [J].
FRIEDMAN, A ;
MCLEOD, B .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1985, 34 (02) :425-447
[8]  
Galaktionov V. A., 1986, DIFF URAVN, V22, P1285
[9]   ASYMPTOTICALLY SELF-SIMILAR BLOW-UP OF SEMILINEAR HEAT-EQUATIONS [J].
GIGA, Y ;
KOHN, RV .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1985, 38 (03) :297-319
[10]  
Henry D, 1981, GEOMETRIC THEORY SEM, V840, DOI 10.1007/BFb0089647