ON A SYMMETRY OF TURBULENCE

被引:7
作者
PECKHAM, S
WAYMIRE, E
机构
[1] OREGON STATE UNIV,DEPT MATH,CORVALLIS,OR 97331
[2] OREGON STATE UNIV,DEPT STAT,CORVALLIS,OR 97331
关键词
D O I
10.1007/BF02096592
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper presents results on symmetries of the spectrum of singularities for random cascades found in the statistical theory of turbulence. It is shown that empirical dimension curves possess a natural symmetry whose presence restricts the class of allowable probability distributions of the cascade generator in a simple manner. In particular, necessary and sufficient conditions on the probability distribution of the generator are obtained for symmetry of the singularity spectrum within a large class of cascade models.
引用
收藏
页码:365 / 370
页数:6
相关论文
共 13 条
[1]   HIGH-ORDER VELOCITY STRUCTURE FUNCTIONS IN TURBULENT SHEAR FLOWS [J].
ANSELMET, F ;
GAGNE, Y ;
HOPFINGER, EJ ;
ANTONIA, RA .
JOURNAL OF FLUID MECHANICS, 1984, 140 (MAR) :63-89
[2]  
BROWN G, 1990, MULTIFRACTAL ANAL ME
[3]   THE DIMENSION SPECTRUM OF SOME DYNAMIC-SYSTEMS [J].
COLLET, P ;
LEBOWITZ, JL ;
PORZIO, A .
JOURNAL OF STATISTICAL PHYSICS, 1987, 47 (5-6) :609-644
[4]  
CUTLER CD, 1991, J STAT PHYS, V65, P417, DOI 10.1007/BF01329872
[5]   SOME RESULTS ON THE BEHAVIOR AND ESTIMATION OF THE FRACTAL DIMENSIONS OF DISTRIBUTIONS ON ATTRACTORS [J].
CUTLER, CD .
JOURNAL OF STATISTICAL PHYSICS, 1991, 62 (3-4) :651-708
[6]  
DURRETT R, 1991, COMMUNICATION
[7]  
FALCONER K.J., 1990, FRACTAL GEOMETRY
[8]  
Feder J., 1988, FRACTALS
[9]  
HOLLEY R, 1992, IN PRESS ANN APPLIED, V2
[10]   CERTAIN MARTINGALES OF MANDELBROT,B [J].
KAHANE, JP ;
PEYRIERE, J .
ADVANCES IN MATHEMATICS, 1976, 22 (02) :131-145