PRECONDITIONING STRATEGIES FOR ASYMPTOTICALLY ILL-CONDITIONED BLOCK TOEPLITZ-SYSTEMS

被引:74
作者
SERRA, S [1 ]
机构
[1] UNIV PISA,DIPARTIMENTO INFORMAT,I-56100 PISA,ITALY
来源
BIT | 1994年 / 34卷 / 04期
关键词
LINEAR SYSTEMS; CONJUGATE GRADIENT METHOD; TOEPLITZ MATRIX; PRECONDITIONING;
D O I
10.1007/BF01934269
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A particular class of preconditioners for the conjugate gradient method and other iterative methods is proposed for the solution of linear systems A(n,m)x = b, where A(n,m) is an n x n positive definite block Toeplitz matrix with m x m Toeplitz blocks. In particular we propose a sparse preconditioner P-n,P-m such that the condition number of the preconditioned matrix turns out to be less than a suitable constant independent of both n and pn, even if the condition number of A(n,m) tends to infinity. This leads to iterative methods which require a number of steps independent of m and n in order to reduce the error by a given factor.
引用
收藏
页码:579 / 594
页数:16
相关论文
共 22 条
[1]  
AXELSSON O, 1988, NUMER MATH, V48, P499
[2]  
BINI D, 1983, LINEAR ALGEBRA APPL, V52-3, P99
[3]   STABILITY OF METHODS FOR SOLVING TOEPLITZ-SYSTEMS OF EQUATIONS [J].
BUNCH, JR .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1985, 6 (02) :349-364
[4]   A FAMILY OF BLOCK PRECONDITIONERS FOR BLOCK SYSTEMS [J].
CHAN, RH ;
JIN, XQ .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1992, 13 (05) :1218-1235
[6]  
CHAN RH, IN RPESS NUMER LINEA
[7]  
COPPERSMITH D, 1990, J SYMB COMPUT, V9, P1
[8]  
Davis PJ, 1979, CIRCULANT MATRICES
[9]  
DIBENEDETTO F, IN PRESS SIAM J SCI
[10]  
DIBENEDETTO F, 1993, COMPUT MATH APPL, V6, P33