Hyperspectral Remote Sensing of Vegetation

被引:63
作者
Im, Jungho [1 ]
Jensen, John R. [2 ]
机构
[1] SUNY Syracuse, Coll Environm Sci & Forestry, Environm Resources & Forest Engn, Syracuse, NY 13210 USA
[2] Univ South Carolina, Geog, Columbia, SC 29208 USA
来源
GEOGRAPHY COMPASS | 2008年 / 2卷 / 06期
关键词
D O I
10.1111/j.1749-8198.2008.00182.x
中图分类号
P9 [自然地理学]; K9 [地理];
学科分类号
0705 ; 070501 ;
摘要
Hyperspectral analysis of vegetation involves obtaining spectral reflectance measurements in hundreds of bands in the electromagnetic spectrum. These measurements may be obtained using hand-held spectroradiometers or hyperspectral remote sensing instruments placed onboard aircraft or satellites. Hyperspectral remote sensing provides valuable information about vegetation type, leaf area index, biomass, chlorophyll, and leaf nutrient concentration which are used to understand ecosystem functions, vegetation growth, and nutrient cycling. This article first reviews hyperspectral remote sensing and then describes current modeling and classification techniques used to estimate and predict vegetation type and biophysical characteristics.
引用
收藏
页码:1943 / 1961
页数:19
相关论文
共 64 条
[1]   Spectral vegetation indices as nondestructive tools for determining durum wheat yield [J].
Aparicio, N ;
Villegas, D ;
Casadesus, J ;
Araus, JL ;
Royo, C .
AGRONOMY JOURNAL, 2000, 92 (01) :83-91
[2]   A practical approach for estimating the red edge position of plant leaf reflectance [J].
Baranoski, GVG ;
Rokne, JG .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2005, 26 (03) :503-521
[3]   Estimating forage quantity and quality using aerial hyperspectral imagery for northern mixed-grass prairie [J].
Beeri, Ofer ;
Phillips, Rebecca ;
Hendrickson, John ;
Frank, Albert B. ;
Kronberg, Scott .
REMOTE SENSING OF ENVIRONMENT, 2007, 110 (02) :216-225
[4]   Retrieval of chlorophyll concentration from leaf reflectance spectra using wavelet analysis [J].
Blackburn, George Alan ;
Ferwerda, Jelle Garke .
REMOTE SENSING OF ENVIRONMENT, 2008, 112 (04) :1614-1632
[5]   Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture [J].
Boegh, E ;
Soegaard, H ;
Broge, N ;
Hasager, CB ;
Jensen, NO ;
Schelde, K ;
Thomsen, A .
REMOTE SENSING OF ENVIRONMENT, 2002, 81 (2-3) :179-193
[6]  
Breiman L., 1984, CLASSIFICATION REGRE, P368, DOI 10.1201/9781315139470
[7]  
Cheng Y., 2008, REMOTE SENS ENVIRON, V112, P1820
[8]   Estimating vegetation water content with hyperspectral data for different canopy scenarios: Relationships between AVIRIS and MODIS indexes [J].
Cheng, Yen-Ben ;
Zarco-Tejada, Pablo J. ;
Riano, David ;
Rueda, Carlos A. ;
Ustin, Susan L. .
REMOTE SENSING OF ENVIRONMENT, 2006, 105 (04) :354-366
[9]   Modelling of Italian forest net primary productivity by the integration of remotely sensed and GIS data [J].
Chirici, Gherardo ;
Barbati, Anna ;
Maselli, Fabio .
FOREST ECOLOGY AND MANAGEMENT, 2007, 246 (2-3) :285-295
[10]   Crown structure and biomass allocation patterns modulate aboveground productivity in young loblolly pine and slash pine [J].
Chmura, Daniel J. ;
Rahman, Mohd S. ;
Tjoelker, Mark G. .
FOREST ECOLOGY AND MANAGEMENT, 2007, 243 (2-3) :219-230