RADIALLY SYMMETRIC-SOLUTIONS OF A CLASS OF SINGULAR ELLIPTIC-EQUATIONS

被引:21
作者
GATICA, JA
HERNANDEZ, GE
WALTMAN, P
机构
[1] UNIV IOWA,DEPT MATH,IOWA CITY,IA 52242
[2] EMORY UNIV,DEPT MATH & COMP SCI,ATLANTA,GA 30322
关键词
D O I
10.1017/S0013091500018101
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The boundary value problem is studied with a view to obtaining the existence of positive solutions in C1([0, l])∩C2((0,1)). The function f is assumed to be singular in the second variable, with the singularity modeled after the special case f(x,y) = a(x)y−p, p>0. This boundary value problem arises in the search of positive radially symmetric solutions to where Ω is the open unit ball in ℝN, centered at the origin, Γ is its boundary and ǀxǀ is the Euclidean norm of x. © 1990, Edinburgh Mathematical Society. All rights reserved.
引用
收藏
页码:169 / 180
页数:12
相关论文
共 11 条
[1]   GROUND-STATES OF -DELTA-U=F(U) AND THE EMDEN-FOWLER EQUATION [J].
ATKINSON, FV ;
PELETIER, A .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1986, 93 (02) :103-127
[2]  
Erbe L., 1988, DIFFERENTIAL INTEGRA, V1, P71
[3]   SINGULAR NONLINEAR BOUNDARY-VALUE PROBLEMS FOR 2ND-ORDER ORDINARY DIFFERENTIAL-EQUATIONS [J].
GATICA, JA ;
OLIKER, V ;
WALTMAN, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1989, 79 (01) :62-78
[4]  
GATICA JA, 1987, ITERATIVE PROCEDURES
[5]  
Gidas B., 1981, MATH ANAL APPL PART, V7A, P369
[6]   A NON-LINEAR SINGULAR BOUNDARY-VALUE PROBLEM IN THE THEORY OF PSEUDOPLASTIC FLUIDS [J].
NACHMAN, A ;
CALLEGARI, A .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1980, 38 (02) :275-281
[7]  
NUSSBAUM RD, 1976, J LOND MATH SOC, V14, P31
[8]   NEAR RADIALLY SYMMETRICAL-SOLUTIONS OF AN INVERSE PROBLEM IN GEOMETRIC OPTICS [J].
OLIKER, VI .
INVERSE PROBLEMS, 1987, 3 (04) :743-756
[9]   CONCAVE SOLUTIONS OF SINGULAR NONLINEAR DIFFERENTIAL EQUATIONS [J].
STUART, CA .
MATHEMATISCHE ZEITSCHRIFT, 1974, 136 (02) :117-135
[10]  
Taliaferro S. D., 1979, Nonlinear Analysis Theory, Methods & Applications, V3, P897, DOI 10.1016/0362-546X(79)90057-9