LOBE AREA IN ADIABATIC HAMILTONIAN-SYSTEMS

被引:29
作者
KAPER, TJ
WIGGINS, S
机构
来源
PHYSICA D | 1991年 / 51卷 / 1-3期
基金
美国国家科学基金会;
关键词
D O I
10.1016/0167-2789(91)90233-Y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish an analytically computable formula based on the adiabatic Melnikov function for lobe area in one-degree-of-freedom Hamiltonian systems depending on a parameter which varies slowly in time. We illustrate this lobe area result on a slowly, parametrically forced pendulum, a paradigm problem for adiabatic chaos. Our analysis unites the theory of action from classical mechanics with the theory of the adiabatic Melnikov function from the field of global bifurcation theory.
引用
收藏
页码:205 / 212
页数:8
相关论文
共 18 条
[1]  
Arnol'd V. I., 1963, USPEKHI MAT NAUK, V18, P91, DOI DOI 10.1070/RM1963V018N06ABEH001143
[2]  
BRUHWILER D, 1991, UNPUB
[3]   ADIABATIC-INVARIANT CHANGE DUE TO SEPARATRIX CROSSING [J].
CARY, JR ;
ESCANDE, DF ;
TENNYSON, JL .
PHYSICAL REVIEW A, 1986, 34 (05) :4256-4275
[4]   ORBITS IN ASYMMETRIC TOROIDAL MAGNETIC-FIELDS [J].
CARY, JR ;
HEDRICK, CL ;
TOLLIVER, JS .
PHYSICS OF FLUIDS, 1988, 31 (06) :1586-1600
[5]  
ELSKENS Y, UNPUB NONLINEARITY
[6]  
Guckenheimer J, 2013, NONLINEAR OSCILLATIO, V42
[7]  
HORSCH MW, 1983, LECTURE NOTES MATH S, V583
[8]  
KAPER TJ, LAUR902455 LOS AL NA
[10]   RELATION BETWEEN QUANTUM AND CLASSICAL THRESHOLDS FOR MULTIPHOTON IONIZATION OF EXCITED ATOMS [J].
MACKAY, RS ;
MEISS, JD .
PHYSICAL REVIEW A, 1988, 37 (12) :4702-4706