EIGENVALUE STATISTICS OF DISORDERED CONDUCTORS

被引:6
作者
HARRIS, R
YAN, ZD
机构
[1] MCGILL UNIV,DEPT PHYS,MONTREAL H3A 2T8,QUEBEC,CANADA
[2] MCGILL UNIV,CTR PHYS MAT,MONTREAL H3A 2T8,QUEBEC,CANADA
关键词
D O I
10.1088/0953-8984/5/40/002
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We apply the statistical measures of Wigner, Dyson and Mehta to quantum-mechanical systems having intrinsic disorder. We observe a transition from regular Poisson-like to Wigner-like eigenvalue statistics, and relate these two limiting behaviours to the ballistic and mesoscopic regimes of quantum transport. In strongly disordered systems we observe that the eigenvalue spectra have a more complex structure, whose nature seems to provide a useful indicator of transport behaviour. We also observe similar effects in the spectra of quantum-mechanical systems whose classical analogues exhibit chaotic behaviour, and we can therefore provide a semi-quantitative description of the non-universal conductance fluctuations recently observed by Marcus and co-workers in ballistic microstructures.
引用
收藏
页码:L493 / L499
页数:7
相关论文
共 31 条
[1]  
ALTSHULER BL, 1986, ZH EKSP TEOR FIZ+, V91, P220
[2]  
ALTSHULER BL, 1985, JETP LETT+, V41, P648
[3]   SEMICLASSICAL LEVEL SPACINGS WHEN REGULAR AND CHAOTIC ORBITS COEXIST [J].
BERRY, MV ;
ROBNIK, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (12) :2413-2421
[4]   CHARACTERIZATION OF CHAOTIC QUANTUM SPECTRA AND UNIVERSALITY OF LEVEL FLUCTUATION LAWS [J].
BOHIGAS, O ;
GIANNONI, MJ ;
SCHMIT, C .
PHYSICAL REVIEW LETTERS, 1984, 52 (01) :1-4
[5]   RANDOM-MATRIX PHYSICS - SPECTRUM AND STRENGTH FLUCTUATIONS [J].
BRODY, TA ;
FLORES, J ;
FRENCH, JB ;
MELLO, PA ;
PANDEY, A ;
WONG, SSM .
REVIEWS OF MODERN PHYSICS, 1981, 53 (03) :385-479
[6]   ENERGY-LEVEL STATISTICS OF INTEGRABLE QUANTUM-SYSTEMS [J].
CASATI, G ;
CHIRIKOV, BV ;
GUARNERI, I .
PHYSICAL REVIEW LETTERS, 1985, 54 (13) :1350-1353
[7]   STATISTICAL THEORY OF ENERGY LEVELS OF COMPLEX SYSTEMS .4. [J].
DYSON, FJ ;
MEHTA, ML .
JOURNAL OF MATHEMATICAL PHYSICS, 1963, 4 (05) :701-&
[8]   STATISTICAL THEORY OF ENERGY LEVELS OF COMPLEX SYSTEMS .3. [J].
DYSON, FJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1962, 3 (01) :166-&
[9]  
DYSON FJ, 1962, J MATH PHYS, V3, P140, DOI 10.1063/1.1703773
[10]  
DYSON FJ, 1962, J MATH PHYS, V3, P157, DOI 10.1063/1.1703774