OPTIMUM DESIGN WITH FINITE-ELEMENTS - DESIGN OF ELECTROCHEMICAL MACHINING

被引:8
作者
BUTT, R
机构
[1] Centre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan
关键词
OPTIMAL SHAPES; ELECTROCHEMICAL MACHINING PROBLEMS; CONVEXITY; GRADIENT METHOD; FINITE-ELEMENT METHOD; APPROXIMATION; SOBOLEV SPACES; VARIATIONAL FORMULATION;
D O I
10.1016/0377-0427(93)90002-S
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An electrochemical machining moving boundary problem is formulated, which is designed by the techniques of optimal control descretized with triangular finite elements of degree one; the gradient of the criteria as a function of coordinates moving nodes is computed, and the performance criterion is then minimized by a gradient method.
引用
收藏
页码:151 / 165
页数:15
相关论文
共 8 条
[1]  
Angrand, Numerical method for optimal shape design in aerodynamics, Thèse du 3ème cycle, (1980)
[2]  
Butt, Optimal shape design for differential inequalities, Ph.D. Thesis, (1988)
[3]  
Ciarlet, The Finite Element Method for Elliptic Problems, Stud. Math. Appl., 4, (1979)
[4]  
Glowinski, Lions, Tremolieres, Numerical Analysis of Variational Inequalities, Stud. Math. Appl., 8, (1981)
[5]  
Lions, Some topics on variational inequalities and applications, New Developments in Differential Equations, 21, pp. 1-38, (1976)
[6]  
Pironneau, Optimal Shape Design for Elliptic Systems, (1984)
[7]  
Saguez, Contrôle d'un système gouverné par une inequation variationnelle parabolique
[8]  
observation de domaine de contact, C.R. Acad. Sci. Paris Sér. I. Math., 287, pp. 955-957, (1979)