In the context of Hermitian one-matrix models we show that the emergence of the NLS hierarchy and of its reduction, the KdV hierarchy, is an exact result of the lattice characterizing the matrix model. Said otherwise, we are not obliged to take a continuum limit to find these hierarchies. We interpret this result as an indication of the topological nature of them. We discuss the topological field theories associated with both and discuss the connection with topological field theories coupled to topological gravity already studied in the literature.