CHARACTERIZATION AND EXPRESSION OF 2 CDNAS ENCODING CARBONIC-ANHYDRASE IN ARABIDOPSIS-THALIANA

被引:62
作者
FETT, JP [1 ]
COLEMAN, JR [1 ]
机构
[1] UNIV TORONTO, DEPT BOT, TORONTO M5S 3B2, ON, CANADA
关键词
D O I
10.1104/pp.105.2.707
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Two distinct cDNA clones encoding carbonic anhydrase (CA) were isolated from an Arabidopsis thaliana lambda YES library. One of these clones, CA1, encodes a 36.1-kD polypeptide and is essentially the same as a previously reported Arabidopsis CA cDNA (C.A. Raines, P.R. Horsnell, C. Holder, J.C. Lloyd [1992] Plant Mol Biol 20: 1143-1148). Comparison of the derived amino acid sequence from this clone with other plant CAs suggests the presence of a chloroplastic transit peptide, which, when cleaved, would render a mature protein of 24.3 kD. The other identified clone, CA2, encodes a 28.3-kD polypeptide, which in addition to other residue changes, is 78 amino acids shorter at the N terminus than the primary product of CA1. The two cDNAs exhibit 76.9% sequence similarity at the DNA level and 84.6% identity between the predicted amino acid sequences. A polyclonal antibody generated against pea CA (N. Majeau, J.R. Coleman [1991] Plant Physiol 100: 1077-1078) hybridized to two protein bands (25 and 28 kD) from a total leaf extract and to only one band (25 kD) from a chloroplastic protein extract. The data suggest that the CA2 protein is an extrachloroplastic form of CA, presumably localized in the cytoplasm. Southern analysis indicated that CA1 and CA2 are encoded by different genes. Northern analysis of total leaf RNA resulted in hybridization of CA1- and CA2-derived probes to two transcripts of 1.47 and 1.2 kb, respectively. These data provide additional evidence that the CA2 clone is a full-length cDNA and that two transcribed CA genes are present in the Arabidopsis genome. Transcript levels of CA1 and CA2 decreased 70 and 20%, respectively, when mature plants were transferred to dark for 24 h. Seedlings germinated in the dark showed CA1 and CA2 transcript abundance levels of 4 and 22%, respectively, when compared with light-germinated seedlings. These data suggest that expression of CA1 is light regulated and dependent on leaf and/or chloroplast development. A possible role for cytoplasmic CA in the plant cell is discussed.
引用
收藏
页码:707 / 713
页数:7
相关论文
共 31 条
[1]   SPINACH CHLOROPLASTIC CARBONIC-ANHYDRASE - NUCLEOTIDE-SEQUENCE ANALYSIS OF CDNA [J].
BURNELL, JN ;
GIBBS, MJ ;
MASON, JG .
PLANT PHYSIOLOGY, 1990, 92 (01) :37-40
[2]   NITRATE ACTIVATION OF CYTOSOLIC PROTEIN-KINASES DIVERTS PHOTOSYNTHETIC CARBON FROM SUCROSE TO AMINO-ACID BIOSYNTHESIS - BASIS FOR A NEW CONCEPT [J].
CHAMPIGNY, ML ;
FOYER, C .
PLANT PHYSIOLOGY, 1992, 100 (01) :7-12
[3]   MOLECULAR-CLONING AND DNA-SEQUENCE OF THE ARABIDOPSIS-THALIANA ALCOHOL-DEHYDROGENASE GENE [J].
CHANG, C ;
MEYEROWITZ, EM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (05) :1408-1412
[4]   ARABIDOPSIS THALIANA MUTANT THAT DEVELOPS AS A LIGHT-GROWN PLANT IN THE ABSENCE OF LIGHT [J].
CHORY, J ;
PETO, C ;
FEINBAUM, R ;
PRATT, L ;
AUSUBEL, F .
CELL, 1989, 58 (05) :991-999
[5]  
Dellaporta S.L., 1983, PLANT MOL BIOL REP, V1, P19, DOI [10.1007/BF02712670, DOI 10.1007/BF02712670]
[6]   LAMBDA-YES - A MULTIFUNCTIONAL CDNA EXPRESSION VECTOR FOR THE ISOLATION OF GENES BY COMPLEMENTATION OF YEAST AND ESCHERICHIA-COLI MUTATIONS [J].
ELLEDGE, SJ ;
MULLIGAN, JT ;
RAMER, SW ;
SPOTTSWOOD, M ;
DAVIS, RW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (05) :1731-1735
[7]  
FAWCETT TW, 1990, J BIOL CHEM, V265, P5414
[8]  
FEINBERG AP, 1984, ANAL BIOCHEM, V137, P266
[9]   AN EVOLUTIONARILY CONSERVED PROTEIN-BINDING SEQUENCE UPSTREAM OF A PLANT LIGHT-REGULATED GENE [J].
GIULIANO, G ;
PICHERSKY, E ;
MALIK, VS ;
TIMKO, MP ;
SCOLNIK, PA ;
CASHMORE, AR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1988, 85 (19) :7089-7093
[10]   CARBONIC-ANHYDRASE ACTIVITY IN LEAVES AND ITS ROLE IN THE FIRST STEP OF C-4 PHOTOSYNTHESIS [J].
HATCH, MD ;
BURNELL, JN .
PLANT PHYSIOLOGY, 1990, 93 (02) :825-828