A DEGREE CONDITION FOR SPANNING EULERIAN SUBGRAPHS

被引:10
作者
CHEN, ZH
机构
[1] Department of Mathematics, Wayne State University, Detroit, Michigan
关键词
D O I
10.1002/jgt.3190170103
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p greater-than-or-equal-to 2 be a fixed integer. Let G be a simple and 2-edge-connected graph on n vertices, and let g be the girth of G. If d(u) + d(upsilon) greater-than-or-equal-to (2/(g - 2))((n/p) - 4 + g) holds whenever uv is-not-an-element-of E(G), and if n is sufficiently large compared to p, then either G has a spanning eulerian subgraph or G can be contracted to a graph G1 of order at most p without a spanning eulerian subgraph. Furthermore, we characterize the graphs that satisfy the conditions above such that G1 has order p and does not have any spanning eulerian subgraph.
引用
收藏
页码:5 / 21
页数:17
相关论文
共 8 条
[1]   ON CIRCUITS AND PANCYCLIC LINE GRAPHS [J].
BENHOCINE, A ;
CLARK, L ;
KOHLER, N ;
VELDMAN, HJ .
JOURNAL OF GRAPH THEORY, 1986, 10 (03) :411-425
[2]  
BONDY JA, 1976, GRAPH THEORY APPLICA
[3]   A REDUCTION METHOD TO FIND SPANNING EULERIAN SUBGRAPHS [J].
CATLIN, PA .
JOURNAL OF GRAPH THEORY, 1988, 12 (01) :29-44
[4]   CONTRACTIONS OF GRAPHS WITH NO SPANNING EULERIAN SUBGRAPHS [J].
CATLIN, PA .
COMBINATORICA, 1988, 8 (04) :313-321
[5]   SPANNING EULERIAN SUBGRAPHS AND MATCHINGS [J].
CATLIN, PA .
DISCRETE MATHEMATICS, 1989, 76 (02) :95-116
[6]  
CHEN ZH, UNPUB SUPEREULERIAN
[7]   CONTRACTIONS AND HAMILTONIAN LINE GRAPHS [J].
LAI, HJ .
JOURNAL OF GRAPH THEORY, 1988, 12 (01) :11-15
[8]  
Lesniak-Foster L., 1977, CAN MATH B, V20, P215