MOTION OF A PARTICLE IN A RING-SHAPED POTENTIAL - AN APPROACH VIA A NONBIJECTIVE CANONICAL TRANSFORMATION

被引:69
作者
KIBLER, M
NEGADI, T
机构
[1] UNIV LYON 1,INST NATL PHYS NUCL & PHYS PARTICULES,F-69622 VILLEURBANNE,FRANCE
[2] UNIV ORAN,INST PHYS,ORAN,ALGERIA
关键词
D O I
10.1002/qua.560260308
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
引用
收藏
页码:405 / 410
页数:6
相关论文
共 13 条
[1]  
BARUT AO, 1979, J MATH PHYS, V20, P2244, DOI 10.1063/1.524005
[2]  
BOITEUX M, 1972, CR ACAD SCI B PHYS, V274, P867
[3]  
FLUGGE S, 1971, PRACTICAL QUANTUM ME, V1, P108
[4]   MOTION OF A BODY IN A RING-SHAPED POTENTIAL [J].
HARTMANN, H .
THEORETICA CHIMICA ACTA, 1972, 24 (2-3) :201-&
[5]   DIAMAGNETIC SUSCEPTIBILITY OF A NON-SPHEROSYMMETRIC SYSTEM [J].
HARTMANN, H ;
SCHUCK, R ;
RADTKE, J .
THEORETICA CHIMICA ACTA, 1976, 42 (01) :1-3
[6]  
HARTMANN H, 1980, INT J QUANTUM CHEM, V28, P125
[7]  
HARTMANN H, 1972, NEUE WELLENMECHANISC, V10, P107
[8]  
Ikeda M., 1970, MATH JPN, V15, P127
[9]   ON THE CONNECTION BETWEEN THE HYDROGEN-ATOM AND THE HARMONIC-OSCILLATOR - THE CONTINUUM CASE [J].
KIBLER, M ;
NEGADI, T .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (18) :4265-4268
[10]   CONNECTION BETWEEN THE HYDROGEN-ATOM AND THE HARMONIC-OSCILLATOR - THE ZERO-ENERGY CASE [J].
KIBLER, M .
PHYSICAL REVIEW A, 1984, 29 (05) :2891-2894