CHAOTIC BEHAVIOR AND OSCILLATING 3-VOLUMES IN BIANCHI-IX UNIVERSES

被引:42
作者
RUGH, SE [1 ]
JONES, BJT [1 ]
机构
[1] STERRENWACHT LEIDEN,2300 RA LEIDEN,NETHERLANDS
关键词
D O I
10.1016/0375-9601(90)90553-Z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Previous numerical studies of vacuum Bianchi IX cosmologies unwittingly contained "matter" having negative energy density, thereby causing erratic oscillations in the three-volume and apparent chaotic behavior of the principal axes. The behaviour with physically acceptable positive or zero energy densities shows the expected monotonically declining three-volume. We show further that the maximal Liapunov characteristic exponent of the phase flow is zero with respect to the time variable that is usually used in investigating this model. Despite this, the deterministic model is unpredictable (the entropy per cycle is large and positive) with respect to the number of Kasner epochs comprising each major cycle. © 1990.
引用
收藏
页码:353 / 359
页数:7
相关论文
共 15 条
[1]   CHAOTIC BEHAVIOR IN GENERAL-RELATIVITY [J].
BARROW, JD .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1982, 85 (01) :1-49
[2]   CHAOS IN THE EINSTEIN EQUATIONS [J].
BARROW, JD .
PHYSICAL REVIEW LETTERS, 1981, 46 (15) :963-966
[3]  
BARROW JD, 1984, CLASSICAL GENERAL RE
[4]   OSCILLATORY APPROACH TO A SINGULAR POINT IN RELATIVISTIC COSMOLOGY [J].
BELINSKI.VA ;
KHALATNI.IM ;
LIFSHITZ, EM .
ADVANCES IN PHYSICS, 1970, 19 (80) :525-&
[5]   A GENERAL-SOLUTION OF THE EINSTEIN EQUATIONS WITH A TIME SINGULARITY [J].
BELINSKII, VA ;
KHALATNIKOV, IM ;
LIFSHITZ, EM .
ADVANCES IN PHYSICS, 1982, 31 (06) :639-667
[6]  
DOROSHKEVICH AG, 1971, SOV ASTRON, V14, P763
[7]   QUALITATIVE AND NUMERICAL STUDY OF BIANCHI-IX MODELS [J].
FRANCISCO, G ;
MATSAS, GEA .
GENERAL RELATIVITY AND GRAVITATION, 1988, 20 (10) :1047-1054
[8]   ON THE STOCHASTICITY IN RELATIVISTIC COSMOLOGY [J].
KHALATNIKOV, IM ;
LIFSHITZ, EM ;
KHANIN, KM ;
SHCHUR, LN ;
SINAI, YG .
JOURNAL OF STATISTICAL PHYSICS, 1985, 38 (1-2) :97-114
[9]  
KHALATNIKOV IM, 1984, GENERAL RELATIVITY G
[10]  
Landau L, 1975, CLASSICAL THEORY FIE, V2