NONPARAMETRIC-ESTIMATION OF STRUCTURAL MODELS FOR HIGH-FREQUENCY CURRENCY MARKET DATA

被引:50
作者
BANSAL, R
GALLANT, AR
HUSSEY, R
TAUCHEN, G
机构
[1] DUKE UNIV, DURHAM, NC 27706 USA
[2] UNIV N CAROLINA, CHAPEL HILL, NC 27599 USA
[3] GEORGETOWN UNIV, WASHINGTON, DC 20007 USA
基金
美国国家科学基金会;
关键词
MONETARY MODEL; CALIBRATION; SIMULATION ESTIMATOR; EXCHANGE RATES; NONPARAMETRIC;
D O I
10.1016/0304-4076(94)01618-A
中图分类号
F [经济];
学科分类号
02 ;
摘要
Empirical modeling of high-frequency currency market data reveals substantial evidence for nonnormality, stochastic volatility, and other nonlinearities. This paper investigates whether an equilibrium monetary model can account for nonlinearities in weekly data. The model incorporates time-nonseparable preferences and a transaction cost technology. Simulated sample paths are generated using Marcet's parameterized expectations procedure. The paper also develops a new method for estimation of structural economic models. The method forces the model to match (under a GMM criterion) the score function of a non-parametric estimate of the conditional density of observed data. The estimation uses weekly U.S.-German currency market data, 1975-90.
引用
收藏
页码:251 / 287
页数:37
相关论文
共 70 条