ON APPROXIMATE INERTIAL MANIFOLDS TO THE NAVIER-STOKES EQUATIONS

被引:130
作者
TITI, ES [1 ]
机构
[1] UNIV CALIF IRVINE,DEPT MATH,IRVINE,CA 92717
基金
美国国家科学基金会;
关键词
D O I
10.1016/0022-247X(90)90061-J
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently, the theory of Inertial Manifolds has shown that the long time behavior (the dynamics) of certain dissipative partial differential equations can be fully discribed by that of a finite ordinary differential system. Although we are still unable to prove existence of Inertial Manifolds to the Navier-Stokes equations, we present here a nonlinear finite dimensional analytic manifold that approximates closely the global attractor in the two-dimensional case, and certain bounded invariant sets in the three-dimensional case. This approximate manifold and others allow us to introduce modified Galerkin approximations. © 1990.
引用
收藏
页码:540 / 557
页数:18
相关论文
共 29 条
[1]  
Brezis H., 1980, Nonlinear Analysis Theory, Methods & Applications, V4, P677, DOI 10.1016/0362-546X(80)90068-1
[2]   GLOBAL LYAPUNOV EXPONENTS, KAPLAN-YORKE FORMULAS AND THE DIMENSION OF THE ATTRACTORS FOR 2D NAVIER-STOKES EQUATIONS [J].
CONSTANTIN, P ;
FOIAS, C .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1985, 38 (01) :1-27
[3]   ON THE LARGE TIME GALERKIN APPROXIMATION OF THE NAVIER-STOKES EQUATIONS [J].
CONSTANTIN, P ;
FOIAS, C ;
TEMAM, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1984, 21 (04) :615-634
[4]  
Constantin P., 1989, J DYN DIFFER EQU, V1, P45
[5]  
Constantin P., 1988, NAVIER STOKES EQUATI
[6]  
CONSTANTIN P, 1988, APPLIED MATH SCI SER, V70
[7]  
FOIAS C, 1987, CR ACAD SCI I-MATH, V305, P497
[8]   ASYMPTOTIC ANALYSIS OF THE NAVIER-STOKES EQUATIONS [J].
FOIAS, C ;
MANLEY, OP ;
TEMAM, R ;
TREVE, YM .
PHYSICA D, 1983, 9 (1-2) :157-188
[9]  
FOIAS C, 1979, J MATH PURE APPL, V58, P339
[10]   INERTIAL MANIFOLDS FOR NONLINEAR EVOLUTIONARY EQUATIONS [J].
FOIAS, C ;
SELL, GR ;
TEMAM, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1988, 73 (02) :309-353