DETERMINATION OF EQUILIBRIUM AND INDIVIDUAL RATE CONSTANTS FOR SUBTILISIN-CATALYZED TRANSESTERIFICATION IN ANHYDROUS ENVIRONMENTS

被引:45
作者
CHATTERJEE, S
RUSSELL, AJ
机构
[1] UNIV PITTSBURGH, CTR BIOTECHNOL & BIOENGN, PITTSBURGH, PA 15261 USA
[2] UNIV PITTSBURGH, DEPT CHEM ENGN, PITTSBURGH, PA 15261 USA
关键词
ENZYMES; ORGANIC SOLVENTS; MECHANISM; SUBTILISIN; MICROSCOPIC RATE CONSTANTS;
D O I
10.1002/bit.260400910
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
We report here the first determinations of individual rate constants and equilibrium constants for enzymatic reactions in essentially anhydrous organic solvents. Using the added nucleophile method we have measured the effect of changing solvent on the binding and catalytic steps for subtilisin-catalyzed transesterification of N-protected amino acid esters. The detailed information generated indicates that once the substrate has bound to the enzyme, the catalytic machinery can work at rates equivalent to those in water. The decreased overall rates for subtilisin suspended in anhydrous solvents are merely the result of extremely high values for K(s), in most cases, coupled with low concentrations of nucleophile (approximately 1.0M in organic solvents, and 55M in water). The method described, which is generally applicable, and straightforward experimentally, will, we believe, enable a clearer understanding of how changing solvent can predictably affect the activity and specificity of the enzyme.
引用
收藏
页码:1069 / 1077
页数:9
相关论文
共 35 条