A LOWER BOUND FOR STRUCTURING ELEMENT DECOMPOSITIONS

被引:9
作者
RICHARDSON, CH
SCHAFER, RW
机构
[1] Digital Signal Processing Laboratory, School of Electrical Engineering, Georgia Institute of Technology, Atlanta
关键词
LOWER BOUND ON DECOMPOSITIONS; MATHEMATICAL MORPHOLOGY; OPTIMAL DECOMPOSITIONS; STRUCTURING ELEMENT DECOMPOSITIONS; STRUCTURING ELEMENTS;
D O I
10.1109/34.88571
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This correspondence describes a theoretical lower bound on the number of points required in the decomposition of morphological structuring elements. It is shown that the decomposition of an arbitrary N-point structuring element will require at least [GRAPHICS] points. Using this lower bound it is possible to find the optimal decompositions (in terms of the minimum number of unions or the minimum number of points) for all one-dimensional connected line segments. L-dimensional rectangles may be decomposed by optimally decomposing the L one-dimensional line segments that describe the rectangle.
引用
收藏
页码:365 / 369
页数:5
相关论文
共 11 条
[1]  
Abbott L., 1988, Machine Vision and Applications, V1, P23, DOI 10.1007/BF01212310
[2]  
[Anonymous], AUTOMATIC GENERATION
[3]  
Chvatal V, 1983, LINEAR PROGRAMMING
[4]   AN AUTOMATIC METHOD OF SOLVING DISCRETE PROGRAMMING-PROBLEMS [J].
LAND, AH ;
DOIG, AG .
ECONOMETRICA, 1960, 28 (03) :497-520
[5]  
NEMHOUSER GL, 1988, INTEGER COMBINATORIA
[6]  
Richardson C. H., 1987, Proceedings of the SPIE - The International Society for Optical Engineering, V845, P249, DOI 10.1117/12.976512
[7]  
RICHARDSON CH, 1990, JUL P SPIE IM ALG MO, V1350
[8]  
Serra J, 1982, IMAGE ANAL MATH MORP
[9]  
Taha H.A., 1975, INTEGER PROGRAMMING
[10]  
VOGT RC, 1988, THESIS U MICHIGAN