SOLVING SHALLOW-WATER EQUATIONS BY A MIXED IMPLICIT FINITE-ELEMENT METHOD

被引:46
作者
BERMUDEZ, A
RODRIGUEZ, C
VILAR, MA
机构
[1] Department of Applied Mathematics, University of Santiago de Compostela
关键词
D O I
10.1093/imanum/11.1.79
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper the shallow water equations are solved by using a numerical scheme implicit in time, and finite elements of Raviart and Thomas for the space discretization. The nonlinear discretized problem is solved by a duality iterative algorithm. Numerical results for the dam break test problem and for simulation of real tidal currents are given.
引用
收藏
页码:79 / 97
页数:19
相关论文
共 18 条
[1]   FINITE-ELEMENTS AND CHARACTERISTICS FOR SOME PARABOLIC-HYPERBOLIC PROBLEMS [J].
BERCOVIER, M ;
PIRONNEAU, O ;
SASTRI, V .
APPLIED MATHEMATICAL MODELLING, 1983, 7 (02) :89-96
[2]   DUALITY METHODS FOR SOLVING VARIATIONAL-INEQUALITIES [J].
BERMUDEZ, A ;
MORENO, C .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1981, 7 (01) :43-58
[3]  
BERMUDEZ A, 1987, RAIRO-MATH MODEL NUM, V21, P7
[4]  
BERMUDEZ A, 1989, UNPUB UPWIND EXPLICI
[5]  
Ekeland I., 1976, CONVEX ANAL VARIATIO
[6]   APPROXIMATE RIEMANN SOLUTIONS OF THE SHALLOW-WATER EQUATIONS [J].
GLAISTER, P .
JOURNAL OF HYDRAULIC RESEARCH, 1988, 26 (03) :293-306
[7]   FINITE-ELEMENT SOLUTION OF THE SHALLOW-WATER EQUATIONS BY A QUASI-DIRECT DECOMPOSITION PROCEDURE [J].
GOUSSEBAILE, J ;
HECHT, F ;
LABADIE, G ;
REINHART, L .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1984, 4 (12) :1117-1136
[8]   2 STEP EXPLICIT FINITE-ELEMENT METHOD FOR TSUNAMI WAVE-PROPAGATION ANALYSIS [J].
KAWAHARA, M ;
TAKEUCHI, N ;
YOSHIDA, T .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1978, 12 (02) :331-351
[9]  
Lions J.-L., 1969, QUELQUES M THODES R
[10]   WAVE-EQUATION MODEL FOR FINITE-ELEMENT TIDAL COMPUTATIONS [J].
LYNCH, DR ;
GRAY, WG .
COMPUTERS & FLUIDS, 1979, 7 (03) :207-228