ANALYTIC APPROACH TO THE PROBLEM OF CONVERGENCE OF TRUNCATED LEVY FLIGHTS TOWARDS THE GAUSSIAN STOCHASTIC-PROCESS

被引:398
作者
KOPONEN, I
机构
[1] Department of Physics, University of Helsinki, SF-00014 Helsinki
来源
PHYSICAL REVIEW E | 1995年 / 52卷 / 01期
关键词
D O I
10.1103/PhysRevE.52.1197
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An analytic expression for characteristic function defining a truncated Levy flight is derived. It is shown that the characteristic function yields results in agreement with recent simulations of truncated Levy flights by Mantegna and Stanley [Phys. Rev. Lett. 73, 2946 (1994)]. With the analytic expression for the characteristic function, the convergence of the Levy process towards the Gaussian is demonstrated without simulations. In the calculation of first return probability the simulations are replaced by numerical integration using simple quadratures.
引用
收藏
页码:1197 / 1199
页数:3
相关论文
共 6 条
  • [1] TRANSPORT ASPECTS IN ANOMALOUS DIFFUSION - LEVY WALKS
    BLUMEN, A
    ZUMOFEN, G
    KLAFTER, J
    [J]. PHYSICAL REVIEW A, 1989, 40 (07) : 3964 - 3974
  • [2] ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS
    BOUCHAUD, JP
    GEORGES, A
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5): : 127 - 293
  • [3] Guedenko B. V., 1954, LIMIT DISTRIBUTIONS
  • [4] Mandelbrot B. B., 1982, FRACTAL GEOMETRY NAT, P1
  • [5] MAUTEGNA RN, 1994, PHYS REV LETT, V73, P2946
  • [6] STRANGE KINETICS
    SHLESINGER, MF
    ZASLAVSKY, GM
    KLAFTER, J
    [J]. NATURE, 1993, 363 (6424) : 31 - 37