L- and N-type Ca2+ channels in adult rat carotid body chemoreceptor type I cells

被引:63
作者
Silva, MJME [1 ]
Lewis, DL [1 ]
机构
[1] MED COLL GEORGIA,DEPT PHARMACOL & TOXICOL,AUGUSTA,GA 30912
来源
JOURNAL OF PHYSIOLOGY-LONDON | 1995年 / 489卷 / 03期
关键词
D O I
10.1113/jphysiol.1995.sp021083
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
1. Whole-cell voltage-dependent Ca2+ currents recorded from chemoreceptor type I cells of the adult rat carotid body had maximum amplitudes of -94 pA in 10 mM Ca2+ and were half-inactivated at a holding potential of -38 mV. Somatostatin and dopamine inhibited whole-cell Ca2+ current in type I cells. 2. The dihydropyridine agonist (+)202-791 increased the Ca2+ current amplitude by 106% at a step potential of -18 mV. The dihydropyridine antagonist nimodipine decreased the Ca2+ current amplitude by 40% from a holding potential of -80 mV, and by 74% from a holding potential of -60 mV. The nimodipine-sensitive current had a maximum amplitude at a membrane potential of -12 mV. omega-Conotoxin GVIA (omega-CgTX GVIA) blocked the whole-cell Ca2+ current by 40%. The omega-CgTX GVIA-sensitive current had a maximum amplitude at a membrane potential of +2 mV. 3. In summary, type I cells of the adult rat carotid body have dihydropyridine-sensitive L-type and omega-conotoxin GVIA-sensitive N-type voltage-dependent Ca2+ channels. These channels may play a role in the voltage-gated entry of Ca2+ necessary for stimulus-secretion coupling in response to changes in arterial PO2, P-CO2 and pH. Inhibition of the Ca2+ currents by somatostatin and dopamine may alter the chemotransduction signal in type I cells.
引用
收藏
页码:689 / 699
页数:11
相关论文
共 38 条
[1]   CHARACTERIZATION OF 2 KINDS OF HIGH-VOLTAGE-ACTIVATED CA-CHANNEL CURRENTS IN CHICK SENSORY NEURONS - DIFFERENTIAL SENSITIVITY TO DIHYDROPYRIDINES AND OMEGA-CONOTOXIN GVIA [J].
AOSAKI, T ;
KASAI, H .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1989, 414 (02) :150-156
[3]   FEEDBACK INHIBITION OF CA-2+ CURRENTS BY DOPAMINE IN GLOMUS CELLS OF THE CAROTID-BODY [J].
BENOT, AR ;
LOPEZBARNEO, J .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1990, 2 (09) :809-812
[4]   CAROTID BODY - STRUCTURE AND FUNCTION [J].
BISCOE, TJ .
PHYSIOLOGICAL REVIEWS, 1971, 51 (03) :437-&
[5]   EFFECTS OF HYPERCAPNIA ON MEMBRANE-POTENTIAL AND INTRACELLULAR CALCIUM IN RAT CAROTID-BODY TYPE-I CELLS [J].
BUCKLER, KJ ;
VAUGHANJONES, RD .
JOURNAL OF PHYSIOLOGY-LONDON, 1994, 478 (01) :157-171
[6]   NIMODIPINE BLOCK OF CALCIUM CHANNELS IN RAT ANTERIOR-PITUITARY-CELLS [J].
COHEN, CJ ;
MCCARTHY, RT .
JOURNAL OF PHYSIOLOGY-LONDON, 1987, 387 :195-225
[7]   EVIDENCE FOR A PO2-SENSITIVE K+ CHANNEL IN THE TYPE-I CELL OF THE RABBIT CAROTID-BODY [J].
DELPIANO, MA ;
HESCHELER, J .
FEBS LETTERS, 1989, 249 (02) :195-198
[8]   BIOPHYSICAL STUDIES OF THE CELLULAR-ELEMENTS OF THE RABBIT CAROTID-BODY [J].
DUCHEN, MR ;
CADDY, KWT ;
KIRBY, GC ;
PATTERSON, DL ;
PONTE, J ;
BISCOE, TJ .
NEUROSCIENCE, 1988, 26 (01) :291-311
[9]   EFFECTS OF LOW OXYGEN ON THE RELEASE OF DOPAMINE FROM THE RABBIT CAROTID-BODY INVITRO [J].
FIDONE, S ;
GONZALEZ, C ;
YOSHIZAKI, K .
JOURNAL OF PHYSIOLOGY-LONDON, 1982, 333 (DEC) :93-110
[10]   L-TYPE CALCIUM CHANNELS IN TYPE-I CELLS OF THE RAT CAROTID-BODY [J].
FIEBER, LA ;
MCCLESKEY, EW .
JOURNAL OF NEUROPHYSIOLOGY, 1993, 70 (04) :1378-1384