Plant-Associated Methylobacteria as Co-Evolved Phytosymbionts A Hypothesis

被引:91
作者
Kutschera, Ulrich [1 ]
机构
[1] Univ Kassel, Inst Biol, Heinrich Plett Str 40, D-34109 Kassel, Germany
关键词
epiphytes; coevolution; symbiosis; methylobacteria; phytohormones; phyllosphere; plant-microbe interaction;
D O I
10.4161/psb.2.2.4073
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Due to their wall-associated pectin metabolism, growing plant cells emit significant amounts of the one-carbon alcohol methanol. Pink-pigmented microbes of the genus Methylobacterium that colonize the surfaces of leaves (epiphytes) are capable of growth on this volatile C1-compound as sole source of carbon and energy. In this article the results of experiments with germ-free (gnotobiotic) sporophytes of angiosperms (sunflower, maize) and gametophytes of bryophytes (a moss and two liverwort species) are summarized. The data show that methylobacteria do not stimulate the growth of these angiosperms, but organ development in moss protonemata and in thalli of liverworts is considerably enhanced. Since methylobacteria produce and secrete cytokinins and auxin, a model of plant-microbe-interaction (symbiosis) is proposed in which the methanol-consuming bacteria are viewed as coevolved partners of the gametophyte that determine its growth, survival and reproduction (fitness). This symbiosis is restricted to the haploid cells of moisture-dependent "living fossil" plants; it does not apply to the diploid sporophytes of higher embryophytes, which are fully adapted to life on land and apparently produce sufficient amounts of endogenous phytohormones.
引用
收藏
页码:74 / 78
页数:5
相关论文
共 44 条
[1]   Molecular interaction between Methylobacterium extorquens and seedlings:: growth promotion, methanol consumption, and localization of the methanol emission site [J].
Abanda-Nkpwatt, Daniel ;
Muesch, Martina ;
Tschiersch, Jochen ;
Boettner, Mewes ;
Schwab, Wilfried .
JOURNAL OF EXPERIMENTAL BOTANY, 2006, 57 (15) :4025-4032
[2]   The ecology and biogeography of microorganisms of plant surfaces [J].
Andrews, JH ;
Harris, RF .
ANNUAL REVIEW OF PHYTOPATHOLOGY, 2000, 38 :145-180
[3]  
[Anonymous], 2009, COEVOLUTIONARY PROCE
[4]   PSEUDOMONAS-MESOPHILICA, A NEW SPECIES OF PINK BACTERIA ISOLATED FROM LEAF SURFACES [J].
AUSTIN, B ;
GOODFELLOW, M .
INTERNATIONAL JOURNAL OF SYSTEMATIC BACTERIOLOGY, 1979, 29 (04) :373-378
[5]   Physiology - Obesity and gut flora [J].
Bajzer, Matej ;
Seeley, Randy J. .
NATURE, 2006, 444 (7122) :1009-1010
[6]   AN ASSOCIATION BETWEEN A BACTERIUM AND A LIVERWORT, SCAPANIA NEMOROSA [J].
BASILE, DV ;
SLADE, LL ;
CORPE, WA .
BULLETIN OF THE TORREY BOTANICAL CLUB, 1969, 96 (06) :711-&
[7]   Pectin methylesterase, a regulator of pollen tube growth [J].
Bosch, M ;
Cheung, AY ;
Hepler, PK .
PLANT PHYSIOLOGY, 2005, 138 (03) :1334-1346
[8]   Use of plant growth-promoting bacteria for biocontrol of plant diseases:: Principles, mechanisms of action, and future prospects [J].
Compant, S ;
Duffy, B ;
Nowak, J ;
Clément, C ;
Barka, EA .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2005, 71 (09) :4951-4959
[9]   ECOLOGY OF THE METHYLOTROPHIC BACTERIA ON LIVING LEAF SURFACES [J].
CORPE, WA ;
RHEEM, S .
FEMS MICROBIOLOGY ECOLOGY, 1989, 62 (04) :243-249
[10]   Leaf methanol - The simplest natural product from plants [J].
Fall, R ;
Benson, AA .
TRENDS IN PLANT SCIENCE, 1996, 1 (09) :296-301