HIERARCHICAL BAYESIAN CURVE FITTING AND SMOOTHING

被引:9
作者
ANGERS, JF
DELAMPADY, M
机构
[1] UNIV MONTREAL,DEPT MATH & STAT,MONTREAL H3C 3J7,QUEBEC,CANADA
[2] UNIV BRITISH COLUMBIA,VANCOUVER V6T 1W5,BC,CANADA
来源
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE | 1992年 / 20卷 / 01期
关键词
HIERARCHICAL BAYES; FUNCTION ESTIMATION; CURVE FITTING; SMOOTHING;
D O I
10.2307/3315573
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Estimation of a smooth function is considered when observations on this function added with Gaussian errors are observed. The problem is formulated as a general linear model, and a hierarchical Bayesian approach is then used to study it. Credible bands are also developed for the function. Sensitivity analysis is conducted to determine the influence of the choice of priors on hyperparameters. Finally, the methodology is illustrated using real and simulated examples where it is compared with classical cubic splines. It is also shown that our approach provides a Bayesian solution to some problems in discrete time series.
引用
收藏
页码:35 / 49
页数:15
相关论文
共 14 条
[1]  
Berger J.O., 1985, STAT DECISION THEORY, P74
[2]  
DELAMPADY M, 1987, 54 U BRIT COL DEP ST
[3]   INFORMATION ABOUT HYPERPARAMETERS IN HIERARCHICAL-MODELS [J].
GOEL, PK ;
DEGROOT, MH .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1981, 76 (373) :140-147
[4]   A SMOOTHNESS PRIORS STATE-SPACE MODELING OF TIME-SERIES WITH TREND AND SEASONALITY [J].
KITAGAWA, G ;
GERSCH, W .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1984, 79 (386) :378-389
[5]  
LINDLEY DV, 1972, J ROY STAT SOC B, V34, P1
[6]  
LINTHURST RA, 1986, EPA600486007
[7]  
MA PH, 1988, DATA STATISTICS RES
[8]   BAYES AND EMPIRICAL BAYES SHRINKAGE ESTIMATION OF REGRESSION-COEFFICIENTS [J].
NEBEBE, F ;
STROUD, TWF .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1986, 14 (04) :267-280
[9]  
OHAGAN A, 1978, J R STAT SOC B, V40, P1
[10]   A STRONGLY CONSISTENT PROCEDURE FOR MODEL SELECTION IN A REGRESSION PROBLEM [J].
RAO, CR ;
WU, YH .
BIOMETRIKA, 1989, 76 (02) :369-374