THE VARIATIONAL AND VIRIAL-LIKE THEORY OF OSCILLATIONS AND STABILITY OF NONCONSERVATIVE AND OR NONLINEAR MECHANICAL SYSTEMS

被引:7
作者
PAPASTAVRIDIS, JG
机构
[1] Georgia Inst of Technology, Sch of, Engineering Science & Mechanics,, Atlanta, GA, USA, Georgia Inst of Technology, Sch of Engineering Science & Mechanics, Atlanta, GA, USA
基金
美国国家科学基金会;
关键词
MECHANISMS; -; Oscillations;
D O I
10.1016/0022-460X(86)90264-6
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
A general variational method for the approximate treatment of non-conservative and/or non-linear oscillatory systems is developed. The virial theorem, and some simple stability/instability criteria derived from it are also formulated. Applications of the above to some well-known linear and non-linear problems are presented.
引用
收藏
页码:209 / 227
页数:19
相关论文
共 34 条
[1]  
Duffing G., 1918, ERZWUNGENE SCHWINGUN
[2]   Forced vibrations with finite amplitudes [J].
Hamel, G .
MATHEMATISCHE ANNALEN, 1922, 86 :1-13
[3]   APPLICATION OF HAMILTON LAW OF VARYING ACTION TO THE RESTRICTED 3-BODY PROBLEM [J].
HITZL, DL ;
LEVINSON, DA .
CELESTIAL MECHANICS, 1980, 22 (03) :255-266
[4]   VARIATIONAL METHOD AND MATHIEU EQUATION [J].
HSIEH, DY .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (05) :1147-1151
[5]   ON MATHIEU EQUATION WITH DAMPING [J].
HSIEH, DY .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (04) :722-725
[6]   VARIATIONAL METHODS AND NONLINEAR FORCED-OSCILLATIONS [J].
HSIEH, DY .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (02) :275-280
[7]  
KILCHEVSKII NA, 1977, KURS THEORETICHESKOI, V2
[8]  
KLOTTER K, 1955, VEREIN DTSCH INGENIE, V4, P35
[9]  
KLOTTER K, 1950, NEUERE FESTIGKEITSPR, P118
[10]  
Leipholz H., 1980, STABILITY ELASTIC SY