GAIN OPTIMIZATION FOR DISTRIBUTED PLANTS

被引:10
作者
FEINTUCH, A [1 ]
TANNENBAUM, A [1 ]
机构
[1] BEN GURION UNIV NEGEV,DEPT MATH,IL-84105 BEERSHEBA,ISRAEL
关键词
CONTROL SYSTEMS; LINEAR - Optimization - MATHEMATICAL TECHNIQUES - Interpolation;
D O I
10.1016/0167-6911(86)90122-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this note, we given an explicit solution to the gain margin optimization problem for a wide class of distributed linear time-invariant plants. Essentially we show that the methods of A. Tannenbaum applied to lumped systems extend almost immediately to this case as well.
引用
收藏
页码:295 / 301
页数:7
相关论文
共 23 条
[1]  
AKHIEZER NI, 1965, THEORY MOMENTS
[2]  
CALLIER FM, 1978, IEEE T CIRCUITS SYST, V25, P651, DOI 10.1109/TCS.1978.1084544
[3]   ANALYSIS OF FEEDBACK-SYSTEMS WITH STRUCTURED UNCERTAINTIES [J].
DOYLE, J .
IEE PROCEEDINGS-D CONTROL THEORY AND APPLICATIONS, 1982, 129 (06) :242-250
[4]   MULTIVARIABLE FEEDBACK DESIGN - CONCEPTS FOR A CLASSICAL-MODERN SYNTHESIS [J].
DOYLE, JC ;
STEIN, G .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1981, 26 (01) :4-16
[5]  
DOYLE JC, 1982, 21ST P IEEE C DEC CO, P629
[6]  
Duren P., 1970, THEORY HPSPACES
[7]   ON H-INFINITY-OPTIMAL SENSITIVITY THEORY FOR SISO FEEDBACK-SYSTEMS [J].
FRANCIS, BA ;
ZAMES, G .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1984, 29 (01) :9-16
[8]  
Garnett J., 2007, BOUNDED ANAL FUNCTIO
[9]  
HELTON JW, 1978, ADV MATH SUPPL STUDI, V3
[10]  
Hoffman K., 1962, BANACH SPACES ANAL F