SHAPE-ANALYSIS VIA ORIENTED DISTANCE FUNCTIONS

被引:126
作者
DELFOUR, MC
ZOLESIO, JP
机构
[1] UNIV MONTREAL,DEPT MATH & STAT,MONTREAL H3C 3J7,QUEBEC,CANADA
[2] INST NON LINEAIRE NICE,F-06904 SOPHIA ANTIPOLIS,FRANCE
关键词
D O I
10.1006/jfan.1994.1086
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The object of this paper is twofold. We first present construction, which induce topologies on subsets of a fixed domain or hold-all D in R(N) by using set parameterized functions in an appropriate function space. Second, we study the role of the family of oriented distance functions (also known as algebraic or signed distance functions) in the analysis of shape optimization problems. They play an important role in the introduction of topologies which retain the classical geometric properties associated with sets: convexity, exterior normals, mean curvature, C(k) boundaries, etc. (C) 1994 Academic Press, Inc.
引用
收藏
页码:129 / 201
页数:73
相关论文
共 45 条
[1]  
Adams RA., 2003, PURE APPL MATH SOB O, V2
[2]  
Aubin J.P., 1990, SET-VALUED ANAL, V2, DOI 10.1007/978-0-8176-4848-0
[3]  
AUBIN JP, 1984, ANAL NONLINEAIRE MOT
[4]  
AUBIN JP, 1987, EXERCISES ANAL NONLI
[5]  
BERGER M, 1987, GEOMETRY 1 2, V1
[6]  
Blum H., 1967, MODELS PERCEPTION SP, P362, DOI DOI 10.1142/S0218654308001154
[7]  
Caccioppoli Renato, 1952, REND ACC NAZ LINCEI, VVIII, P137
[8]  
Caccioppoli Renato, 1952, REND ACC NAZ LINCEI, VVIII, P3
[9]   SHAPE RECOGNITION PRAIRIE FIRES CONVEX DEFICIENCIES AND SKELETONS [J].
CALABI, L ;
HARTNETT, WE .
AMERICAN MATHEMATICAL MONTHLY, 1968, 75 (04) :335-+
[10]  
Clarke F.H., 1983, OPTIMIZATION NONSMOO