PROTECTIVE MEASUREMENT AND QUANTUM REALITY

被引:19
作者
ANANDAN, J
机构
[1] Department of Physics and Astronomy, University of South Carolina, Columbia, 29208, South Carolina
关键词
QUANTUM REALITY; MEASUREMENT PROBLEM; QUANTUM GEOMETRY;
D O I
10.1007/BF00662803
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is shown that from the expectation values of obervables, which can be measured for a single system using protective measurements, the linear structure, inner product, and observables in the Hilbert space can be reconstructed. A universal method of measuring the wave function of a single particle using its gravitational field is given. Protective measurement is generalized to the measurement of a degenerate state and to many particle systems. The question of whether the wave function is re is examined, and an argument of Einstein in favor of the ensemble interpretation of quantum theory is refuted.
引用
收藏
页码:503 / 532
页数:30
相关论文
共 15 条
[1]  
Aharonov Y., Vaidman L., Phys. Lett. A, 178, (1993)
[2]  
Aharonov Y., Anandan J., Vaidman L., Phys. Rev. A, 47, (1993)
[3]  
Schiff L.I., Quantum Mechanics, pp. 289-291, (1968)
[4]  
Kobayashi S., Nomizu K., Foundations of Differential Geometry, (1969)
[5]  
Anandan J., Found. Phys., 21, (1991)
[6]  
Pedoe D., An Introduction to Projective Geometry, (1963)
[7]  
Page D.N., Geilker R., Phys. Rev. Lett., 47, (1981)
[8]  
Forward R.L., General Relativity for the Experimentalist, Proceedings of the IRE, 49, (1961)
[9]  
Aharonov Y., Albert D., Phys. Rev. D, 21, (1980)
[10]  
Einstein A., Podolsky B., Rosen R., Phys. Rev., 47, (1935)