AN ASYMPTOTIC EXPRESSION FOR THE SPLITTING OF SEPARATRICES OF THE RAPIDLY FORCED PENDULUM

被引:73
作者
DELSHAMS, A [1 ]
SEARA, TM [1 ]
机构
[1] U POLITECN CATALUNYA, ETSEIB, DEPT MATEMAT APLICADA I, E-08028 BARCELONA, SPAIN
关键词
D O I
10.1007/BF02096956
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The measure of the splitting of the separatrices of the rapidly forced pendulum x double over dot + sin x = mu sin t/epsilon, is considered as a model problem that has been studied by different authors. Here epsilon, mu are small parameters, epsilon > 0, but otherwise independent. The following formula for the angle alpha between separatrices is established [GRAPHICS] This formula is also valid for the particular case mu = epsilon(p), with p > 0, epsilon > 0, and agrees with the one provided by the first order Poincare-Melnikov theory that cannot be applied directly, due to the exponentially small dependence of alpha on the parameter epsilon.
引用
收藏
页码:433 / 463
页数:31
相关论文
共 27 条
[1]  
AMICK C, 1989, IN PRESS J NONLIN AN
[2]  
Arnold V.I., 1988, ENCYCL MATH SCI, V3
[3]  
ARNOLD VI, 1964, DOKL AKAD NAUK SSSR, V156, P581
[4]  
BENSENY A, 1989, EUROPEAN C ITERATION
[5]  
BENSENY A, IN PRESS P EQUADIFF
[6]  
Brjuno AD., 1972, T MOSKOV MAT OBSC, V26, P199
[7]  
Bruno A. D, 1971, T MOSC MATH SOC, V25, P131
[8]  
DELSHAMS A, 1989, 11 C E D Y A MAL, P329
[9]   THE SPLITTING OF SEPARATRICES FOR ANALYTIC DIFFEOMORPHISMS [J].
FONTICH, E ;
SIMO, C .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1990, 10 :295-318
[10]  
FONTICH E, 1991, IN PRESS J NON ANAL