PITTS INEQUALITY AND THE UNCERTAINTY PRINCIPLE

被引:202
作者
BECKNER, W
机构
关键词
D O I
10.2307/2161009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The ''uncertainty principle'' is formulated using logarithmic estimates obtained from a sharp form of Pitt's inequality. The qualitative nature of this result underlies the relations connecting entropy, the Hardy-Littlewood-Sobolev inequality, and the logarithmic Sobolev inequality.
引用
收藏
页码:1897 / 1905
页数:9
相关论文
共 18 条
[1]   INEQUALITIES IN FOURIER-ANALYSIS [J].
BECKNER, W .
ANNALS OF MATHEMATICS, 1975, 102 (01) :159-182
[3]   SOBOLEV INEQUALITIES, THE POISSON SEMIGROUP, AND ANALYSIS ON THE SPHERE SN [J].
BECKNER, W .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (11) :4816-4819
[4]  
Folland G. B., 1989, HARMONIC ANAL PHASE
[5]   LOGARITHMIC SOBOLEV INEQUALITIES [J].
GROSS, L .
AMERICAN JOURNAL OF MATHEMATICS, 1975, 97 (04) :1061-1083
[6]  
Hardy G., 1952, MATH GAZ
[7]   A NOTE ON ENTROPY [J].
HIRSCHMAN, II .
AMERICAN JOURNAL OF MATHEMATICS, 1957, 79 (01) :152-156
[8]   SHARP CONSTANTS IN THE HARDY-LITTLEWOOD-SOBOLEV AND RELATED INEQUALITIES [J].
LIEB, EH .
ANNALS OF MATHEMATICS, 1983, 118 (02) :349-374
[9]  
Messiah A, 1961, QUANTUM MECH, V1
[10]  
PITT H.R., 1937, DUKE MATH J, V3, P747, DOI 10.1215/S0012-7094-37-00363-6