ON EQUILIBRIA OF NONCOMPACT GENERALIZED GAMES

被引:64
作者
DING, XP [1 ]
TAN, KK [1 ]
机构
[1] DALHOUSIE UNIV,DEPT MATH STAT & COMP SCI,HALIFAX B3H 3J5,NS,CANADA
关键词
D O I
10.1006/jmaa.1993.1254
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A fixed point theorem is first proved from which a theorem on the existence of maximal elements for LC-majorized correspondences defined on a non-compact set is obtained. Next, an equilibrium theorem for non-compact qualitative games with LC-majorized correspondences defined on a non-compact strategy set is proved and is applied to prove an equilibrium theorem for non-compact generalized games with LC-majorized correspondences defined on a non-compact strategy set. Our results generalize several previously published corresponding results. © 1993 Academic Press, Inc.
引用
收藏
页码:226 / 238
页数:13
相关论文
共 12 条
[1]  
Aubin J.P., 1984, DIFFERENTIAL INCLUSI, DOI DOI 10.1007/978-3-642-69512-4
[2]  
Borglin A., 1976, J MATH ECON, V3, P313
[3]   EQUILIBRIA OF NONCOMPACT GENERALIZED GAMES WITH L-STAR-MAJORIZED PREFERENCE CORRESPONDENCES [J].
DING, XP ;
KIM, WK ;
TAN, KK .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 164 (02) :508-517
[4]  
Ding XP., 1992, C MATH, V63, P233
[5]  
Dugundji J., 1966, TOPOLOGY
[6]   A GENERALIZATION OF TYCHONOFF FIXED POINT THEOREM [J].
FAN, K .
MATHEMATISCHE ANNALEN, 1961, 142 (03) :305-310
[7]  
Gale D., 1978, EQUILIBRIUM DISEQUIL, P7
[8]  
Shafer W., 1975, J MATH ECON, V2, P345, DOI DOI 10.1016/0304-4068(75)90002-6