A POSTERIORI ERROR ESTIMATORS FOR 2ND-ORDER ELLIPTIC-SYSTEMS .1. THEORETICAL FOUNDATIONS AND A POSTERIORI ERROR ANALYSIS

被引:28
作者
AINSWORTH, M [1 ]
ODEN, JT [1 ]
机构
[1] UNIV TEXAS,TEXAS INST COMPUTAT MECH,AUSTIN,TX 78712
关键词
D O I
10.1016/0898-1221(93)90227-M
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This is the first in a series of two papers dealing with a posteriori error estimation for h-p finite element approximation of second order elliptic systems. In this paper, we shall present the fundamental ideas behind the error estimator and the theoretical foundations for the method. The second paper deals with the algorithmical details.
引用
收藏
页码:101 / 113
页数:13
相关论文
共 8 条
[1]  
Adams RA., 2003, PURE APPL MATH SOB O, V2
[2]  
AINSWORTH M, 1992, UNPUB POSTERIORI E 2
[3]  
AINSWORTH M, IN PRESS NUMERISCHE
[4]   A FEEDBACK FINITE-ELEMENT METHOD WITH A POSTERIORI ERROR ESTIMATION .1. THE FINITE-ELEMENT METHOD AND SOME BASIC PROPERTIES OF THE A POSTERIORI ERROR ESTIMATOR [J].
BABUSKA, I ;
MILLER, A .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1987, 61 (01) :1-40
[5]  
BANK RE, 1985, MATH COMPUT, V44, P283, DOI 10.1090/S0025-5718-1985-0777265-X
[6]  
Demkowicz L, 1989, COMPUT METHODS APPL, V77, P113
[8]  
STRANG G, 1972, ANAL FINITE ELEMENT