PREDICTIONS OF THE DYNAMICS OF A POLYGENIC CHARACTER UNDER DIRECTIONAL SELECTION

被引:34
作者
BURGER, R
机构
[1] Institut fur Mathematik, Universitat Wien, A-1090 Wien
[2] Department of Biology, University of Oregon, Eugene
关键词
D O I
10.1006/jtbi.1993.1101
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A quantitative genetic model for the response of the distribution of a single metric trait to directional selection is investigated. Particular attention is paid to the performance of approximations that used only limited information on the initial state of the population, such as the mean, the variance, the skewness and the kurtosis. Selections is imposed according to an exponentially increasing fitness function, populations mate at random, have discrete generations, and all genetic effects are supposed to be additive. Neglecting random drift, qualitatively different predictions for the initial response of a large population that has previously been at a mutation-stabilizing selection balance are derived. These depend on different assumptions about the initial distribution and are compared to the exact dynamics of that model. Linkage disequilibrium can be ignored as long as linkage is not too tight. The mathematical analysis rests on the method of cumulants and of cumulant-generating functions and produces exact equations for the evolution of cumulants in this model. Small populations subject to random drift are shown to respond in a qualitatively different way. The case of small populations is treatedd, primarily, by Monte Carlo simulations. The consequences of qualitatively different assumptions about maintenance of variation through mutation for the initial response to exponential directional selection are discussed. It is concluded that a signifciant initial increase in variance is unlikely to be observed in selection experiments if the effective population size is not larger than 500 and if response is caused by additive genes. The present results also apply to weak truncation selection. © 1993 Academic Press Limited.
引用
收藏
页码:487 / 513
页数:27
相关论文
共 40 条
  • [2] ADAPTIVE LANDSCAPES, GENETIC-DISTANCE AND THE EVOLUTION OF QUANTITATIVE CHARACTERS
    BARTON, NH
    TURELLI, M
    [J]. GENETICAL RESEARCH, 1987, 49 (02) : 157 - 173
  • [3] BARTON NH, 1989, ANNU REV GENET, V23, P337, DOI 10.1146/annurev.ge.23.120189.002005
  • [5] Bulmer MG., 1980, MATH THEORY QUANTITA
  • [6] MOMENTS, CUMULANTS, AND POLYGENIC DYNAMICS
    BURGER, R
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 1991, 30 (02) : 199 - 213
  • [7] BURGER R, 1989, EVOLUTION, V43, P1748, DOI [10.2307/2409390, 10.1111/j.1558-5646.1989.tb02624.x]
  • [8] BURGER R, 1986, J MATH BIOL, V24, P341, DOI 10.1007/BF00275642
  • [9] BURGER R, 1989, GENETICS, V121, P175
  • [10] The variant call format and VCFtools
    Danecek, Petr
    Auton, Adam
    Abecasis, Goncalo
    Albers, Cornelis A.
    Banks, Eric
    DePristo, Mark A.
    Handsaker, Robert E.
    Lunter, Gerton
    Marth, Gabor T.
    Sherry, Stephen T.
    McVean, Gilean
    Durbin, Richard
    [J]. BIOINFORMATICS, 2011, 27 (15) : 2156 - 2158