BROWNIAN-MOTION OF MULTIDIMENSIONAL SYSTEMS IN NONPOTENTIAL VELOCITY-DEPENDENT FIELDS OF FORCE

被引:2
作者
MASOLIVER, J
LLOSA, J
机构
[1] Departament de Fisica Fonamental, Universitat de Barcelona, 08028 Barcelona Diagonal
来源
PHYSICAL REVIEW A | 1990年 / 41卷 / 02期
关键词
D O I
10.1103/PhysRevA.41.734
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the Brownian motion in velocity-dependent fields of force. Our main result is a Smoluchowski equation valid for moderate to high damping constants. We derive that equation by perturbative solution of the Langevin equation and using functional derivative techniques. © 1990 The American Physical Society.
引用
收藏
页码:734 / 738
页数:5
相关论文
共 32 条
[1]  
[Anonymous], 1984, SPRINGER SERIES SYNE
[2]  
[Anonymous], 1983, HDB STOCHASTIC METHO
[3]  
[Anonymous], 1971, RELATIVISTIC ASTROPH
[4]  
[Anonymous], KINETIC THEORY ELECT
[5]   BROWNIAN MOTION IN A FIELD OF FORCE AND THE DIFFUSION THEORY OF CHEMICAL REACTIONS [J].
BRINKMAN, HC .
PHYSICA, 1956, 22 (0U) :29-34
[6]   Stochastic problems in physics and astronomy [J].
Chandrasekhar, S .
REVIEWS OF MODERN PHYSICS, 1943, 15 (01) :0001-0089
[7]  
CODDINGTON EA, 1955, THEORY ORDINARY DIFF, P316
[8]  
Dubkov A. A., 1976, Soviet Physics - Doklady, V20, P401
[9]  
FERRINI F, 1985, ADV CHEM PHYS, V62, P493
[10]  
Gelfand I. M., 1964, GENERALIZED FUNCTION, VIV