OPTIMAL MEAN-ABSOLUTE-ERROR HIT-OR-MISS FILTERS - MORPHOLOGICAL REPRESENTATION AND ESTIMATION OF THE BINARY CONDITIONAL-EXPECTATION

被引:44
作者
DOUGHERTY, ER [1 ]
LOCE, RP [1 ]
机构
[1] XEROX CORP,JOSEPH C WILSON CTR TECHNOL,WEBSTER,NY 14580
关键词
MATHEMATICAL MORPHOLOGY; MORPHOLOGICAL FILTERS; IMAGE RESTORATION; MEAN-ABSOLUTE ESTIMATOR; OPTIMAL ESTIMATOR; NONLINEAR FILTERS; HIT-OR-MISS TRANSFORMS;
D O I
10.1117/12.132376
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The hit-or-miss operator is used as the building block of optimal binary restoration filters. Filter design methodologies are given for general-, maximum-, and minimum-noise environments, the latter two producing optimal thinning and thickening filters, respectively, and for iterative filters. The approach is based on the expression of translation-invariant filters as unions of hit-or-miss transforms. Unions of hit-or-miss transforms are expressed as canonical logical sums of products, and the final hit-or-miss templates are obtained by logic reduction. The net effect is a morphological representation and estimation of the conditional expectation, which is the overall optimal mean-absolute-error filter.
引用
收藏
页码:815 / 827
页数:13
相关论文
共 11 条
[1]   MINIMAL REPRESENTATIONS FOR TRANSLATION-INVARIANT SET MAPPINGS BY MATHEMATICAL MORPHOLOGY [J].
BANON, GJF ;
BARRERA, J .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1991, 51 (06) :1782-1798
[2]  
Dougherty E. R., 1992, Journal of Mathematical Imaging and Vision, V2, P173, DOI 10.1007/BF00118588
[3]  
Dougherty E. R., 1992, Journal of Mathematical Imaging and Vision, V1, P257, DOI 10.1007/BF00129879
[4]  
Dougherty E. R., 1992, INTRO MORPHOLOGICAL
[5]  
DOUGHERTY ER, 1992, J COMPUT VIS GRAPH I, V55, P36
[6]  
DOUGHERTY ER, 1992, J COMPUT VIS GRAPH I, V55, P55
[7]  
Loce R. P., 1992, Journal of Visual Communication and Image Representation, V3, P412, DOI 10.1016/1047-3203(92)90043-S
[8]   FACILITATION OF OPTIMAL BINARY MORPHOLOGICAL FILTER DESIGN VIA STRUCTURING ELEMENT LIBRARIES AND DESIGN CONSTRAINTS [J].
LOCE, RP ;
DOUGHERTY, ER .
OPTICAL ENGINEERING, 1992, 31 (05) :1008-1025
[9]  
MATHERON G., 1975, RANDOM SETS INTEGRAL
[10]  
MATHEW A, IN PRESS J CIRC SYST