A-POSTERIORI ERROR ESTIMATION AND ADAPTIVE MESH-REFINEMENT TECHNIQUES

被引:348
作者
VERFURTH, R [1 ]
机构
[1] RUHR UNIV BOCHUM,FAK MATHEMAT,D-44780 BOCHUM,GERMANY
关键词
A POSTERIORI ERROR ESTIMATORS; ADAPTIVE MESH-REFINEMENT TECHNIQUES; ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS;
D O I
10.1016/0377-0427(94)90290-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyse three different a posteriori error estimators for elliptic partial differential equations. They are based on the evaluation of local residuals with respect to the strong form of the differential equation, on the solution of local problems with Neumann boundary conditions, and on the solution of local problems with Dirichlet boundary conditions. We prove that all three are equivalent and yield global upper and local lower bounds for the true error. Thus adaptive mesh-refinement techniques based on these estimators are capable to detect local singularities of the solution and to appropriately refine the grid near these singularities. Some numerical examples prove the efficiency of the error estimators and the mesh-refinement techniques.
引用
收藏
页码:67 / 83
页数:17
相关论文
共 25 条
[1]   A LOCAL REFINEMENT FINITE-ELEMENT METHOD FOR TWO-DIMENSIONAL PARABOLIC-SYSTEMS [J].
ADJERID, S ;
FLAHERTY, JE .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1988, 9 (05) :792-811
[2]   AN ADAPTIVE MESH-MOVING AND LOCAL REFINEMENT METHOD FOR TIME-DEPENDENT PARTIAL-DIFFERENTIAL EQUATIONS [J].
ARNEY, DC ;
FLAHERTY, JE .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1990, 16 (01) :48-71
[3]   AN ADAPTIVE LOCAL MESH REFINEMENT METHOD FOR TIME-DEPENDENT PARTIAL-DIFFERENTIAL EQUATIONS [J].
ARNEY, DC ;
FLAHERTY, JE .
APPLIED NUMERICAL MATHEMATICS, 1989, 5 (04) :257-274
[4]   ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :736-754
[5]   A-POSTERIORI ERROR ESTIMATES FOR FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
RHEINBOLDT, WC .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1978, 12 (10) :1597-1615
[6]   ANALYSIS OF THE EFFICIENCY OF AN A POSTERIORI ERROR ESTIMATOR FOR LINEAR TRIANGULAR FINITE-ELEMENTS [J].
BABUSKA, I ;
DURAN, R ;
RODRIGUEZ, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (04) :947-964
[7]   A POSTERIORI ERROR-ESTIMATES FOR THE STOKES EQUATIONS - A COMPARISON [J].
BANK, RE ;
WELFERT, BD .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1990, 82 (1-3) :323-340
[8]  
BANK RE, 1985, MATH COMPUT, V44, P283, DOI 10.1090/S0025-5718-1985-0777265-X
[9]  
BANK RE, 1990, POSTERIORI ERROR EST
[10]   AN ADAPTIVE FINITE-ELEMENT STRATEGY FOR THE 3-DIMENSIONAL TIME-DEPENDENT NAVIER-STOKES EQUATIONS [J].
BANSCH, E .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1991, 36 (01) :3-28