EXPONENTIAL DECAY FOR SUBCRITICAL CONTACT AND PERCOLATION PROCESSES

被引:72
作者
BEZUIDENHOUT, C [1 ]
GRIMMETT, G [1 ]
机构
[1] UNIV BRISTOL,SCH MATH,BRISTOL BS8 1TW,AVON,ENGLAND
关键词
CONTACT PROCESS; PERCOLATION;
D O I
10.1214/aop/1176990332
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the contact process, together with a version of the percolation process with one continuously varying coordinate. It is proved here that the radius of the infected cluster has an exponentially decaying tail throughout the subcritical phase. The same is true of the Lebesgue measure (in space-time) of this cluster. Certain critical-exponent inequalities are derived and the critical point of the percolation process in two dimensions is determined exactly.
引用
收藏
页码:984 / 1009
页数:26
相关论文
共 26 条
  • [1] SHARPNESS OF THE PHASE-TRANSITION IN PERCOLATION MODELS
    AIZENMAN, M
    BARSKY, DJ
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 108 (03) : 489 - 526
  • [2] TREE GRAPH INEQUALITIES AND CRITICAL-BEHAVIOR IN PERCOLATION MODELS
    AIZENMAN, M
    NEWMAN, CM
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1984, 36 (1-2) : 107 - 143
  • [3] AIZENMAN M, 1989, IN PRESS STATIST PHY
  • [4] [Anonymous], 1985, INTERACTING PARTICLE
  • [5] THE CRITICAL CONTACT PROCESS DIES OUT
    BEZUIDENHOUT, C
    GRIMMETT, G
    [J]. ANNALS OF PROBABILITY, 1990, 18 (04) : 1462 - 1482
  • [6] Billingsley P, 1968, CONVERGENCE PROBABIL
  • [7] DENSITY AND UNIQUENESS IN PERCOLATION
    BURTON, RM
    KEANE, M
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 121 (03) : 501 - 505
  • [8] CHAYES JT, 1987, PERCOLATION THEORY E, P49
  • [9] ETHIER S, 1990, UNPUB CONVERGENCE FL
  • [10] Ethier S.N., 2005, MARKOV PROCESSES CHA, Vsecond