ON THE SPECTRAL FLOW OF FAMILIES OF DIRAC OPERATORS WITH CONSTANT SYMBOL

被引:9
作者
BUNKE, U
机构
[1] Institut für reine Mathematik, Humboldt‐Universität zu Berlin, Berlin, 10099
关键词
D O I
10.1002/mana.19941650113
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider families of generalized Dirac operators D(t) with constant principal symbol and constant essential spectrum such that the endpoints are gauge equivalent, i.e., D1 = W*D0W. The spectral flow un any gap in the essential spectrum we express as the Fredholm index of 1 + (W - 1) P where P is the spectral projection on the interval [d, infinity) with respect to D0 and d is in the gap. We reduce the computation of this index to the Atiyah-Singer index theorem for elliptic pseudodifferential operators. We find an invariant of the Riemannian geometry for odd dimensional spin manifolds estimating the length of gaps in the spectrum of the Dirac operator.
引用
收藏
页码:191 / 203
页数:13
相关论文
共 23 条
[1]   SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY .1. [J].
ATIYAH, MF ;
PATODI, VK ;
SINGER, IM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1975, 77 (JAN) :43-69
[2]  
AVRON JE, 1990, 262 TU PREPR
[3]   AN UPPER BOUND FOR THE 1ST EIGENVALUE OF THE DIRAC OPERATOR ON COMPACT SPIN MANIFOLDS [J].
BAUM, H .
MATHEMATISCHE ZEITSCHRIFT, 1991, 206 (03) :409-422
[4]  
BLACKADAR B, 1986, MATH SCI RES I PUBL, V5
[5]   THE INDEX OF THE SCATTERING OPERATOR ON THE POSITIVE SPECTRAL SUBSPACE [J].
BUNKE, U ;
HIRSCHMANN, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 148 (03) :487-502
[6]  
BUNKE U, 1991, ANN GLOB ANAL GEOM, V9, P109
[7]  
CHEEGER J, 1982, J DIFFER GEOM, V17, P15
[8]  
COMMES A, 1990, CR HEBD ACAD SCI, V310, P273
[9]   ON THE EXISTENCE OF EIGENVALUES OF THE SCHRODINGER OPERATOR H-LAMBDA-W IN A GAP OF SIGMA(H) [J].
DEIFT, PA ;
HEMPEL, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 103 (03) :461-490
[10]  
DONNELLY H, 1984, MICH MATH J, V31, P349