SECA, THE PERIPHERAL SUBUNIT OF THE ESCHERICHIA-COLI PRECURSOR PROTEIN TRANSLOCASE, IS FUNCTIONAL AS A DIMER

被引:134
作者
DRIESSEN, AJM
机构
[1] Department of Microbiology, University of Groningen, 9751 NN Haren
关键词
D O I
10.1021/bi00211a030
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
SecA, the peripheral ATPase domain of the Escherichia coli precursor protein translocase, was denatured in 6 M guanidine hydrochloride. Circular dichroism and intrinsic tryptophan fluorescence spectra revealed that the protein is transformed into a random-coil configuration. Upon dilution of the chaotropic agent, SecA refolds into its native, functional conformation as a homodimer. As structural criteria, the native dimeric state was assayed by size-exclusion chromatography, chemical cross-linking, tryptophan fluorescence, and circular dichroism. Functional SecA heterodimers were formed of which the individual subunits were tagged with fluorescent dyes to allow measurements of the association state of the monomers by resonance energy transfer using steady-state and time-resolved fluorescence spectroscopy. SecA retained its dimeric structure during translocation, while energy transfer was abolished only by denaturation. The ''half-of-the-sites activity'' was investigated by constructing heterodimers formed from native and 8-azido-ATP-inactivated SecA. Heterodimers have lost the ability to support translocation of the precursor protein proOmpA in an in vitro translocation system. It is concluded that the dimeric structure is maintained during translocation and required for functionality.
引用
收藏
页码:13190 / 13197
页数:8
相关论文
共 51 条
[1]   RECONSTITUTION OF A PROTEIN TRANSLOCATION SYSTEM CONTAINING PURIFIED SECY, SECE, AND SECA FROM ESCHERICHIA-COLI [J].
AKIMARU, J ;
MATSUYAMA, SI ;
TOKUDA, H ;
MIZUSHIMA, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (15) :6545-6549
[2]   SECA, AN ESSENTIAL COMPONENT OF THE SECRETORY MACHINERY OF ESCHERICHIA-COLI, EXISTS AS HOMODIMER [J].
AKITA, M ;
SHINKAI, A ;
MATSUYAMA, S ;
MIZUSHIMA, S .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1991, 174 (01) :211-216
[3]   TRANSLOCATION CAN DRIVE THE UNFOLDING OF A PREPROTEIN DOMAIN [J].
ARKOWITZ, RA ;
JOLY, JC ;
WICKNER, W .
EMBO JOURNAL, 1993, 12 (01) :243-253
[4]   DISCRETE MUTATIONS INTRODUCED IN THE PREDICTED NUCLEOTIDE-BINDING SITES OF THE MDR1 GENE ABOLISH ITS ABILITY TO CONFER MULTIDRUG RESISTANCE [J].
AZZARIA, M ;
SCHURR, E ;
GROS, P .
MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (12) :5289-5297
[5]  
BERHOWER C, 1991, EMBO J, V10, P3777
[6]   SUPPRESSOR ANALYSIS SUGGESTS A MULTISTEP, CYCLIC MECHANISM FOR PROTEIN SECRETION IN ESCHERICHIA-COLI [J].
BIEKERBRADY, K ;
SILHAVY, TJ .
EMBO JOURNAL, 1992, 11 (09) :3165-3174
[7]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[8]   SECA INSERTION INTO PHOSPHOLIPIDS IS STIMULATED BY NEGATIVELY CHARGED LIPIDS AND INHIBITED BY ATP - A MONOLAYER STUDY [J].
BREUKINK, E ;
DEMEL, RA ;
DEKORTEKOOL, G ;
DEKRUIJFF, B .
BIOCHEMISTRY, 1992, 31 (04) :1119-1124
[9]   THE PURIFIED ESCHERICHIA-COLI INTEGRAL MEMBRANE-PROTEIN SECY/E IS SUFFICIENT FOR RECONSTITUTION OF SECA-DEPENDENT PRECURSOR PROTEIN TRANSLOCATION [J].
BRUNDAGE, L ;
HENDRICK, JP ;
SCHIEBEL, E ;
DRIESSEN, AJM ;
WICKNER, W .
CELL, 1990, 62 (04) :649-657
[10]  
BRUNDAGE L, 1992, J BIOL CHEM, V267, P4166