THE FUNCTIONAL INTEGRAL CONSTRUCTED DIRECTLY FROM THE HAMILTONIAN

被引:36
作者
FARHI, E
GUTMANN, S
机构
[1] MIT,DEPT PHYS,CAMBRIDGE,MA 02139
[2] NORTHEASTERN UNIV,DEPT MATH,BOSTON,MA 02115
关键词
D O I
10.1016/0003-4916(92)90288-W
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Starting with any Hamiltonian and a countable basis we construct a functional integral for the matrix elements of the time evolution operator of the quantum system. Our functional integral consists of a real measure on continuous time paths along with a complex weighting function of the paths. The paths spend time at points corresponding to elements of the basis. We show directly, by cancelling paths, that the functional integral gives rise to unitary time evolution. We illustrate our general construction with a number of examples including the quantum mechanics of the Schrödinger and Dirac particles in one space dimension. © 1992.
引用
收藏
页码:182 / 203
页数:22
相关论文
共 5 条
[1]   FUNCTIONAL INTEGRAL FOR A FREE PARTICLE IN A BOX [J].
CARREAU, M ;
FARHI, E ;
GUTMANN, S .
PHYSICAL REVIEW D, 1990, 42 (04) :1194-1202
[2]   QUANTUM-MECHANICS ON THE HALF-LINE USING PATH INTEGRALS [J].
CLARK, TE ;
MENIKOFF, R ;
SHARP, DH .
PHYSICAL REVIEW D, 1980, 22 (12) :3012-3016
[3]   THE FUNCTIONAL INTEGRAL ON THE HALF-LINE [J].
FARHI, E .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1990, 5 (15) :3029-3051
[4]  
Feynman R., 1965, QUANTUM MECH PATH IN
[5]  
KARLIN S, 1975, 1ST COURSE STOCHASTI, pCH4