On the law of the iterated logarithm for Gaussian processes

被引:46
作者
Arcones, MA
机构
[1] Department of Mathematics, University of Texas, Austin, 78712, Texas
关键词
Gaussian processes; law of the iterated logarithm; self-similar processes;
D O I
10.1007/BF02410116
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present some optimal conditions for the compact law of the iterated logarithm of a sequence of jointly Gaussian processes in different situations. We also discuss the local law of the iterated logarithm for Gaussian processes indexed by arbitrary index sets, in particular for self-similar Gaussian processes. We apply these results to obtain the law of the iterated logarithm for compositions of Gaussian processes.
引用
收藏
页码:877 / 903
页数:27
相关论文
共 17 条
[1]  
ARCONES MA, 1996, STOCH P APPL
[2]  
ARCONES MA, 1996, LAW ITERATED LOGARIT
[3]  
Bingham N.H., 1987, REGULAR VARIATION
[4]   BRUNN-MINKOWSKI INEQUALITY IN GAUSS SPACE [J].
BORELL, C .
INVENTIONES MATHEMATICAE, 1975, 30 (02) :207-216
[5]   LAW CONVERGENCE AND ITERATED LOGARITHMIC LAWS FOR GAUSSIAN VECTORS [J].
CARMONA, R ;
KONO, N .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1976, 36 (03) :241-267
[6]  
FEO CM, 1974, ANN PROBAB, V2, P954
[7]   LAW OF ITERATED LOGARITHM FOR EMPIRICAL DISTRIBUTIONS [J].
FINKELSTEIN, H .
ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (02) :607-+
[8]   GAUSSIAN PROCESSES, MOVING AVERAGES AND QUICK DETECTION PROBLEMS [J].
LAI, TL .
ANNALS OF PROBABILITY, 1973, 1 (05) :825-837
[9]   REPRODUCING KERNEL HILBERT SPACES AND LAW OF ITERATED LOGARITHM FOR GAUSSIAN PROCESSES [J].
LAI, TL .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1974, 29 (01) :7-19
[10]  
Lamperti J., 1962, T AM MATH SOC, V104, P62, DOI DOI 10.1090/S0002-9947-1962-0138128-7