COMPARATIVE-STUDY OF THE MOLECULAR ELECTROSTATIC POTENTIAL OBTAINED FROM DIFFERENT WAVE-FUNCTIONS - RELIABILITY OF THE SEMIEMPIRICAL MNDO WAVE-FUNCTION

被引:110
作者
LUQUE, FJ
ILLAS, F
OROZCO, M
机构
[1] UNIV BARCELONA,FAC QUIM,DEPT QUIM FIS,MARTI & FRANQUES 1,E-08028 BARCELONA,SPAIN
[2] UNIV BARCELONA,FAC FARM,DEPT FARM,UNITAT FIS QUIM,E-08028 BARCELONA,SPAIN
[3] UNIV BARCELONA,FAC QUIM,DEPT BIOQUIM & FISIOL,E-08028 BARCELONA,SPAIN
关键词
D O I
10.1002/jcc.540110403
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A systematic analysis of the molecular electrostatic potential (MEP) is presented. This study has been performed with a twofold purpose: first, to study the MEP dependence with regard to the quality of the basis set used to compute the ab initio SCF wavefunction and second, to develop and to assess a new strategy for computing isoelectrostatic potential maps using the semiempirical MNDO wavefunction. The only differences between this procedure and the ab initio SCF MEP computation lie in the freezing of the inner electrons and in the origin of the first‐order density matrix. The statistical analysis of MEPs computed for a large number of molecules from MNDO wavefunction and ab initio SCF wavefunctions obtained using STO‐3G, 4‐31G, 6‐31G, 4‐31G*, 6‐31G*, and 6‐31G** basis sets points out the ability of any wavefunction to reproduce the general topological characteristics of the MEP surfaces. Nevertheless, split‐valence basis sets including polarization functions are necessary to obtain accurate MEP minimum energy values. MNDO wavefunction tends to overestimate the MEP minima depth by a constant factor and shows an excellent ability to reflect the relative variation of MEP minima energies derived from a rather sophisticated (6‐31G*) basis set, lacking of the shortcomings detected in the semiempirical CNDO approximation. Copyright © 1990 John Wiley & Sons, Inc.
引用
收藏
页码:416 / 430
页数:15
相关论文
共 75 条
[1]   H-1 AND C-13 NUCLEAR-MAGNETIC-RESONANCE AND ULTRAVIOLET STUDIES OF THE PROTONATION OF CYTOSINE, URACIL, THYMINE, AND RELATED-COMPOUNDS [J].
BENOIT, RL ;
FRECHETTE, M .
CANADIAN JOURNAL OF CHEMISTRY-REVUE CANADIENNE DE CHIMIE, 1986, 64 (12) :2348-2352
[2]   PROTONATION OF HYPOXANTHINE, GUANINE, XANTHINE, AND CAFFEINE [J].
BENOIT, RL ;
FRECHETTE, M .
CANADIAN JOURNAL OF CHEMISTRY-REVUE CANADIENNE DE CHIMIE, 1985, 63 (11) :3053-3056
[3]   N- VERSUS O-PROTON AFFINITIES OF AMIDE GROUP - AB-INITIO ELECTROSTATIC MOLECULAR POTENTIALS [J].
BONACCORSI, R ;
TOMASI, J ;
SCROCCO, E ;
PULLMAN, A .
CHEMICAL PHYSICS LETTERS, 1972, 12 (04) :622-+
[4]   GROUP CONTRIBUTIONS TO ELECTROSTATIC MOLECULAR POTENTIAL [J].
BONACCORSI, R ;
SCROCCO, E ;
TOMASI, J .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1976, 98 (14) :4049-4054
[5]   APPROXIMATE EXPRESSION OF ELECTROSTATIC MOLECULAR POTENTIAL IN TERMS OF COMPLETELY TRANSFERABLE GROUP CONTRIBUTIONS [J].
BONACCORSI, R ;
SCROCCO, E ;
TOMASI, J .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1977, 99 (14) :4546-4554
[6]   ATOMIC CHARGES DERIVED FROM ELECTROSTATIC POTENTIALS - A DETAILED STUDY [J].
CHIRLIAN, LE ;
FRANCL, MM .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1987, 8 (06) :894-905
[7]   DEORTHOGONALIZATION OF ATOMIC ORBITALS IN THE CNDO APPROACH [J].
CHUNGPHILLIPS, A .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1989, 10 (01) :17-34
[8]   REPRESENTATION OF THE MOLECULAR ELECTROSTATIC POTENTIAL BY A NET ATOMIC CHARGE MODEL [J].
COX, SR ;
WILLIAMS, DE .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1981, 2 (03) :304-323
[9]   CALCULATION OF MOLECULAR ELECTROSTATIC POTENTIALS WITHIN THE INDO FRAMEWORK [J].
CULBERSON, JC ;
ZERNER, MC .
CHEMICAL PHYSICS LETTERS, 1985, 122 (05) :436-441
[10]   MOLECULAR-ORBITAL STUDY OF THE PROTONATION OF DNA BASES [J].
DELBENE, JE .
JOURNAL OF PHYSICAL CHEMISTRY, 1983, 87 (02) :367-371