MICROSCOPIC THEORY OF BROWNIAN MOTION - MULTIPLE-TIME-SCALE POINT OF VIEW

被引:43
作者
CUKIER, RI
DEUTCH, JM
机构
[1] Department of Chemistry, Princeton University, Princeton
来源
PHYSICAL REVIEW | 1969年 / 177卷 / 01期
关键词
D O I
10.1103/PhysRev.177.240
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a microscopic derivation of a Fokker-Planck equation for the distribution function of a heavy Brownian particle in a dense fluid from the Liouville equation. The usual perturbation theory suffers from the presence of secular terms familiar from non-linear mechanics. We employ the multiple time scale" technique developed by Frieman and Sandri to eliminate the secular terms and render the expansions uniformly valid in time. The method introduces explicit time variables to exploit the existence of a multiplicity of time scales inherent in the problem. Using this formalism we derive the Fokker-Planck equation for spatially inhomogeneous Brownian motion. © 1969 The American Physical Society."
引用
收藏
页码:240 / &
相关论文
共 17 条
[1]  
[Anonymous], 1961, LECT THEORETICAL PHY
[2]  
BOGOLIUBOV NN, 1961, ASYMPTOTIC THEORY NO
[3]   ON A NEW METHOD IN THEORY OF IRREVERSIBLE PROCESSES [J].
FRIEMAN, EA .
JOURNAL OF MATHEMATICAL PHYSICS, 1963, 4 (03) :410-&
[5]   THE STATISTICAL MECHANICAL THEORY OF TRANSPORT PROCESSES .1. GENERAL THEORY [J].
KIRKWOOD, JG .
JOURNAL OF CHEMICAL PHYSICS, 1946, 14 (03) :180-201
[6]  
KRYLOV N, 1947, INTRODUCTION NONLINE
[7]   MICROSCOPIC THEORY OF BROWNIAN MOTION IN AN OSCILLATING FIELD - CONNECTION WITH MACROSCOPIC THEORY [J].
LEBOWITZ, JL ;
RESIBOIS, P .
PHYSICAL REVIEW, 1965, 139 (4A) :1101-+
[8]   DYNAMICAL STUDY OF BROWNIAN MOTION [J].
LEBOWITZ, JL ;
RUBIN, E .
PHYSICAL REVIEW, 1963, 131 (06) :2381-+
[9]  
MCCUNE JE, 1963, RAREFIED GAS DYN, V1, P102
[10]  
MONTGOMERY D, 1967, LECTURES THEORETICAL, VC 9, P15