A CORRELATION-INEQUALITY INVOLVING STABLE SET AND CHROMATIC POLYNOMIALS

被引:8
作者
FARR, GE [1 ]
机构
[1] AUSTRALIAN NATL UNIV, RES SCH PHYS SCI, CANBERRA, ACT 2600, AUSTRALIA
关键词
D O I
10.1006/jctb.1993.1026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose each vertex of a graph G is chosen with probability p, these choices being independent. Let A(G, p) be the probability that no two chosen vertices are adjacent. This is essentially the clique polynomial of the complement of G which has been extensively studied in a variety of incarnations. We use the Ahlswede-Daykin Theorem to prove that, for all G, and all positive integers λ, P(G, λ)/λn ≤ A(G, λ-1)λ, where P(G, λ) is the chromatic polynomial of G. © 1993 Academic Press, Inc.
引用
收藏
页码:14 / 21
页数:8
相关论文
共 24 条
[1]   INEQUALITY FOR WEIGHTS OF 2 FAMILIES OF SETS, THEIR UNIONS AND INTERSECTIONS [J].
AHLSWEDE, R ;
DAYKIN, DE .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1978, 43 (03) :183-185
[2]  
Biggs N., 1974, ALGEBRAIC GRAPH THEO
[3]  
BONDY JA, 1976, GRAPH THEORY APPLICA
[4]  
BORZACCHINI L, 1976, REND ACCAD SIC FIS M, V43
[5]  
BORZACCHINI L, 1981, CALCOLO, V17, P97
[6]  
BORZACCHINI L., 1982, B UNIONE MAT ITAL, P589
[7]  
BORZACCHINI L, 1987, ARS COMBIN
[8]  
Farr G. E., 1988, Advanced Research in VLSI. Proceedings of the Fifth MIT Conference, P131
[9]  
Farrell E.J., 1989, INT J MATH MATH SCI, V12, P77, DOI 10.1155/S0161171289000104
[10]   GENERAL-CLASS OF GRAPH POLYNOMIALS [J].
FARRELL, EJ .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1979, 26 (01) :111-122