Extraction of nucleic acids from red algae is complicated by the presence of phycocolloids. For this reason, methods used for nucleic acid isolation from other organisms are not always amenable to use with red algal preparations; modifications in some cases lead to protocols that are time consuming and complicated, often requiring large amounts of algal tissue for starting material. Here we describe the isolation of both RNA and DNA followed by fractionation and identification of nuclear, chloroplast, and mitochondrial DNAs from a single preparation of Polysiphonia boldii Wynne and Edwards using a simple method that yielded approximately 100-mu-g of total RNA and 20-mu-g of total DNA from 1 g of frozen powdered algae. The potent protein denaturant guanidinium thiocyanate and the detergent sarkosyl were used to gently lyse the cells and organelles and immediately inhibit nuclease activity in the extract. The nucleic acids were isolated by ultracentrifugation into a dense solution of CsCl; the RNA was recovered as a pellet and the DNA as a band within the CsCl solution. Agarose gel electrophoresis of the total RNA showed discrete ribosomal RNA bands, indicating little nonspecific degradation. The nuclear, chloroplast, and mitochondrial DNAs were fractionated by density gradient ultracentrifugation in the presence of the DNA binding dye, bisbenzimide H (Hoechst 33258), which binds preferentially to DNA with a high A + T:G + C ratio, thus altering its density to a greater degree than it does that of DNA with a lower nucleotide ratio. The three fractions were identified by Southern blot analysis using heterologous gene probes specific for the different genomes. The protocol should be applicable to different types of algae. The simple nucleic acid isolation step can be performed on multiple samples simultaneously without subsequent fractionation of DNA, allowing comparison of DNA from different individuals, populations, or species.