SPECTRUM OF THE QCD DIRAC OPERATOR AND CHIRAL RANDOM-MATRIX THEORY

被引:372
作者
VERBAARSCHOT, J
机构
[1] Department of Physics, State University of New York at Stony Brook, Stony Brook
关键词
D O I
10.1103/PhysRevLett.72.2531
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We argue that the spectrum of the QCD Dirac operator near zero virtuality can be described by random matrix theory. As in the case of the classical random matrix ensembles of Dyson we have three different cases: the chiral orthogonal ensemble, the chiral unitary ensemble, and the chiral symplectic ensemble. They correspond to gauge groups SU(2) in the fundamental representation, SU (N(c)), N(c) greater-than-or-equal-to 3 in the fundamental representation, and non-Abelian gauge groups SU(N(c)) for all N(c) with fermions in the adjoint representation, respectively. The joint probability density reproduces Leutwyler-Smilga sum rules.
引用
收藏
页码:2531 / 2533
页数:3
相关论文
共 19 条
[1]   RANDOM MATRICES AND INFORMATION THEORY [J].
BALIAN, R .
NUOVO CIMENTO B, 1968, 57 (01) :183-&
[2]   CHIRAL SYMMETRY-BREAKING IN CONFINING THEORIES [J].
BANKS, T ;
CASHER, A .
NUCLEAR PHYSICS B, 1980, 169 (1-2) :103-125
[3]  
BOHIGAS O, 1984, LECT NOTES PHYS, V209, P1
[4]   CHARACTERIZATION OF CHAOTIC QUANTUM SPECTRA AND UNIVERSALITY OF LEVEL FLUCTUATION LAWS [J].
BOHIGAS, O ;
GIANNONI, MJ ;
SCHMIT, C .
PHYSICAL REVIEW LETTERS, 1984, 52 (01) :1-4
[5]  
DIAKONOV D, 1993, QUARK CLUSTER DYNAMI
[6]   TECHNICOLORED SIGNATURES [J].
DIMOPOULOS, S .
NUCLEAR PHYSICS B, 1980, 168 (01) :69-92
[7]  
DYSON FJ, 1962, J MATH PHYS, V3, P140, DOI 10.1063/1.1703773
[8]  
DYSON FJ, 1962, J MATH PHYS, V6, P1199
[9]   SPECTRUM OF DIRAC OPERATOR AND ROLE OF WINDING NUMBER IN QCD [J].
LEUTWYLER, H ;
SMILGA, A .
PHYSICAL REVIEW D, 1992, 46 (12) :5607-5632
[10]  
Mehta M. L., 2004, RANDOM MATRICES STAT