EFFICIENT PARAMETRIZATIONS FOR NORMAL LINEAR MIXED MODELS

被引:122
作者
GELFAND, AE
SAHU, SK
CARLIN, BP
机构
[1] UNIV CAMBRIDGE,STAT LAB,CAMBRIDGE CB2 1SB,ENGLAND
[2] UNIV MINNESOTA,SCH PUBL HLTH,DIV BIOSTAT,MINNEAPOLIS,MN 55455
关键词
GIBBS SAMPLER; HIERARCHICAL MODEL; IDENTIFIABILITY; LAIRD-WARE MODEL; MARKOV CHAIN MONTE CARLO; NESTED MODELS; RANDOM EFFECTS MODEL; RATE OF CONVERGENCE;
D O I
10.2307/2337527
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The generality and easy programmability of modern sampling-based methods for maximisation of likelihoods and summarisation of posterior distributions have led to a tremendous increase in the complexity and dimensionality of the statistical models used in practice. However, these methods can often be extremely slow to converge, due to high correlations between, or weak identifiability of, certain model parameters. We present simple hierarchical centring reparametrisations that often give improved convergence for a broad class of normal linear mixed models. In particular, we study the two-stage hierarchical normal linear model, the Laird-Ware model for longitudinal data, and a general structure for hierarchically nested linear models. Using analytical arguments, simulation studies, and an example involving clinical markers of acquired immune deficiency syndrome (AIDS), We indicate when reparametrisation is likely to provide substantial gains in efficiency.
引用
收藏
页码:479 / 488
页数:10
相关论文
共 14 条
[1]  
BESAG J, 1993, J ROY STAT SOC B MET, V55, P25
[2]   APPROXIMATE INFERENCE IN GENERALIZED LINEAR MIXED MODELS [J].
BRESLOW, NE ;
CLAYTON, DG .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (421) :9-25
[3]  
GELFAND AE, 1995, BAYESIAN STATISTICS, V5
[4]  
Gelman A., 1992, STAT SCI, V7, P457, DOI DOI 10.1214/SS/1177011136
[5]  
GEWEKE J, 1995, IN PRESS J ECONOMET
[6]  
GOLDSTEIN H, 1986, BIOMETRIKA, V73, P43
[7]  
HILLS SE, 1992, BAYESIAN STATISTICS, V4, P461
[8]   RANDOM-EFFECTS MODELS FOR LONGITUDINAL DATA [J].
LAIRD, NM ;
WARE, JH .
BIOMETRICS, 1982, 38 (04) :963-974
[9]  
LANGE N, 1992, J AM STAT ASSOC, V87, P615, DOI 10.2307/2290194
[10]  
LINDLEY DV, 1972, J ROY STAT SOC B, V34, P1