SOLUTION OF A MULTINEPHRON, MULTISOLUTE MODEL OF THE MAMMALIAN KIDNEY BY NEWTON AND CONTINUATION METHODS

被引:25
作者
MEJIA, R [1 ]
STEPHENSON, JL [1 ]
机构
[1] NIADDKD,MATH RES BRANCH,BETHESDA,MD 20205
关键词
D O I
10.1016/0025-5564(84)90036-1
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页码:279 / 298
页数:20
相关论文
共 34 条
[1]  
BUNOW B, 1982, INSTABILITIES BIFURC
[2]   MATHEMATICAL-MODEL OF MASS-TRANSPORT THROUGHOUT THE KIDNEY - EFFECTS OF NEPHRON HETEROGENEITY AND TUBULAR-VASCULAR ORGANIZATION [J].
CHANDHOKE, PS ;
SAIDEL, GM .
ANNALS OF BIOMEDICAL ENGINEERING, 1981, 9 (04) :263-301
[3]  
CHOW SN, 1978, MATH COMPUT, V32, P887, DOI 10.1090/S0025-5718-1978-0492046-9
[4]  
CRANDALL MG, 1973, ARCH RATION MECH AN, V52, P161, DOI 10.1007/BF00282325
[5]   SOLUTE CONCENTRATION IN KIDNEY .2. INPUT-OUTPUT STUDIES ON A CENTRAL CORE MODEL [J].
FOSTER, D ;
JACQUEZ, JA ;
DANIELS, E .
MATHEMATICAL BIOSCIENCES, 1976, 32 (3-4) :337-360
[6]   MATHEMATICAL-ANALYSIS OF A MODEL FOR THE RENAL CONCENTRATING MECHANISM [J].
GARNER, JB ;
KELLOGG, RB ;
STEPHENSON, JL .
MATHEMATICAL BIOSCIENCES, 1983, 65 (01) :125-150
[7]   SOLUTE CONCENTRATION IN KIDNEY .1. MODEL OF RENAL MEDULLA AND ITS LIMIT CASES [J].
JACQUEZ, JA ;
FOSTER, D .
MATHEMATICAL BIOSCIENCES, 1976, 32 (3-4) :307-335
[8]  
KELLER HB, 1977, APPLICATIONS BIFURCA
[9]  
Kubicek M., 1976, ACM T MATH SOFTWARE, V2, P98, DOI DOI 10.1145/355666.355675
[10]   NUMERICAL-SOLUTION OF A KIDNEY MODEL BY MULTIPLE SHOOTING [J].
LORY, P .
MATHEMATICAL BIOSCIENCES, 1980, 50 (1-2) :117-128