COLLOCATION SOFTWARE FOR 2ND-ORDER ELLIPTIC PARTIAL-DIFFERENTIAL EQUATIONS

被引:40
作者
HOUSTIS, EN [1 ]
MITCHELL, WF [1 ]
RICE, JR [1 ]
机构
[1] ARISTOTELIAN UNIV SALONIKA, SALONIKA, GREECE
来源
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE | 1985年 / 11卷 / 04期
关键词
MATHEMATICAL TECHNIQUES - Differential Equations;
D O I
10.1145/6187.6191
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider the collocation method for linear, second-order elliptic problems on rectangular and general two-dimensional domains. An overview of the method is given for general domains, followed by a discussion of the improved efficiencies and simplifications possible for rectangular domains. A very-high-level description is given of three specific collocation algorithms that use Hermite bicubic basic functions, (1) GENCOL (collocation on general two-dimensional domains), (2) HERMCOL (collocation on rectangular domains with general linear boundary conditions), and (3) INTCOL (collocation on rectangular domains with uncoupled boundary conditions). The linear system resulting from INTCOL has half the bandwidth of that from HERMCOL, which provides substantial benefit in solving the system. We provide some examples showing the range of applicability of the algorithms and some performance profiles illustrating their efficiency.
引用
收藏
页码:379 / 412
页数:34
相关论文
共 21 条
[1]  
BALART R, 1982, 10TH IMACS WORLD C M, V1, P98
[2]  
COURANT R, 1950, DIRICHLETS PRINCIPLE, V3
[3]   THE PERFORMANCE OF THE COLLOCATION AND GALERKIN METHODS WITH HERMITE BI-CUBICS [J].
DYKSEN, WR ;
HOUSTIS, EN ;
LYNCH, RE ;
RICE, JR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1984, 21 (04) :695-715
[4]  
DYKSEN WR, 1984, ELLIPTIC PROBLEM SOL, V2, P467
[5]  
DYKSEN WR, UNPUB SIAM J STAT SC
[6]  
Gordon W.J., 1973, INT J NUM MATH ENG, V7, P461, DOI [DOI 10.1002/NME.1620070405,ARXIV:HTTPS://ONLINELIBRARY.WILEY.COM/DOI/PDF/10.1002/NME.1620070405, DOI 10.1002/NME.1620070405]
[7]   PERFORMANCE EVALUATION OF ALGORITHMS FOR MILDLY NON-LINEAR ELLIPTIC PROBLEMS [J].
HOUSTIS, EN ;
MITCHELL, WF ;
PAPATHEODOROU, TS .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1983, 19 (05) :665-709
[8]   EVALUATION OF NUMERICAL-METHODS FOR ELLIPTIC PARTIAL-DIFFERENTIAL EQUATIONS [J].
HOUSTIS, EN ;
LYNCH, RE ;
RICE, JR .
JOURNAL OF COMPUTATIONAL PHYSICS, 1978, 27 (03) :323-350
[9]  
HOUSTIS EN, 1979, ADV COMPUTER METHODS, V2, P13
[10]  
HOUSTIS EN, 1985, ACM T SOFTW, V12, P416